maps

Anything about maps, cartography

A-Train Classic

Neighborhood Research and the Census for Undergrads

Each semester I visit several undergraduate classes in public affairs and journalism, to introduce students to census data. They’re researching or reporting on particular issues and trends in neighborhoods in New York City, and they are looking for statistics to either support their work or generate ideas for a story. I usually showcase the NYC Population Factfinder as a starting point, mention the Census Reporter for areas outside the city , and provide background info on the decennial census, American Community Survey, and census geography and subjects. This year I included two new examples toward the beginning of the lecture to spark their interest.

I recently helped reporter Susannah Jacob navigate census data for an article she wrote on hyper-gentrification in the West Village for the New York Review of Books. A perfect example, as it’s what the students are expected to do for their assignment! Like any good journalist (and human geographer), Susannah pounded the pavement of the neighborhood, interviewing residents and small businesses and observing and documenting the urban landscape and how it was changing. But she also wanted to see what the data could tell her, and whether it would corroborate or refute what she was seeing and hearing.

NYRB Article on the West Village

Source: Jacob & Roye, New York Review of Books, Oct 2019. https://www.nybooks.com/daily/2019/10/09/what-happened-to-the-west-village/

We used the NYC Population Factfinder to assemble census tracts to approximate the neighborhood, and I did a little legwork to pull data from the County / ZIP Code Business Patterns so we could see how the business landscape was changing. The most surprising stat we discovered was that the number of 1-unit detached homes had doubled. This wouldn’t be odd in many rapidly growing places in the US, but it’s unusual for an old, built-out urban neighborhood. A 1-unit detached home is a free-standing single family structure that doesn’t share walls with other buildings. Most homes in Manhattan are either attached (row houses / town houses) or units in multi-unit buildings (apartments / condos / co-ops). How could this be? Uber-wealthy people are buying up adjoining row homes, knocking down the walls, and turning them into urban mansions. Seems extraordinary, but apparently is part of a trend.

We certainly ran up against the limitations of ACS data. The estimates for tracts have large margins of error, and when comparing two short time frames it’s difficult to detect actual change, as differences in estimates are clouded by sampling noise. Even after aggregating several tracts, many of the estimates for change weren’t reliable enough to report. When they were (as in the housing example) you could only say that there has been a relative increase without becoming wedded to a precise number. In this case, from 214 (+/- 127) detached units in 2006-2010 to 627 (+/-227) in 2013-2017, an increase of 386 (+/- 260). Not great estimates, but you can say it’s an increase as the low end for change is still positive at 126 units. Considering the time frame and character of the neighborhood, that’s still noteworthy (bearing in mind we’re working with a 90% confidence interval). In cases where the differences overlap and could represent either an increase or decrease there are few claims you can make, and it’s best to walk away (or look at larger area). I always discuss the margin of error with students and caution them about treating these numbers as counts.

While census data is invaluable for describing and studying individual places, it’s inherent geographic nature also allows us to study places in relation to each other, and to illustrate geographic patterns. For my second example, I zoom out and show them this map of racial-ethnic distribution in the United States:

Map of US Racial and Ethnic Diversity

Source: William H. Frey analysis of US Census population estimates, 2018. https://www.brookings.edu/research/americas-racial-diversity-in-six-maps/

This is one of a series of six maps by demographer William Frey at the Brookings Institute that highlights the geographic diversity of the United States. In this map, each county is shaded for a particular race / ethnicity if the population of that group in that county is greater than that group’s share of the national population. For example, Hispanics / Latinos represent 18.3% of the total US population, so counties where they represent more than this percentage are shaded.

For the purpose of the class, it helps make the census ‘pop’ and gets the students to think about the statistics as geospatial datasets that they can see and relate to, and that can form the basis for interesting research.

Some footnotes – if you like Frey’s maps, I highly recommend his book Diversity Explosion: How New Racial Demographics are Remaking America. It explores the evolving demographic and geographic landscape of the US with clear, accessible writing and more of these great maps (in color).

I used the pic at the top of this post as the background for my intro slide. It’s a screenshot of a city from A-Train, a 1992 city-building train simulator that was ported from Japan to the world by Artdink and Maxis, following the success of something called SimCity. It wasn’t nearly as successful, but I always liked the graphics which have now attained a retro-gaming vibe.

FRED Chart - Pesronal Savings Rate

Finding Economic Data with FRED

I attended ALA’s annual conference in DC last month, where I met FRED. Not a person, but a database. I can’t believe I hadn’t met FRED before – it is an amazingly valuable resource for national, time-series economic data.

FRED was created by the Economic Research unit of the Federal Reserve Bank of St. Louis. It was designed to aggregate economic data from many government sources into a centralized database, with straightforward interface for creating charts and tables. At present, it contains 567,000 US and international time series datasets from 87 sources.

Categories of data include banking and finance (interest and exchange rates, lending, monetary data), labor markets (basic demographics, employment and unemployment, job openings, taxes, real estate), national accounts (national income, debt, trade), production and business (business cycles, production, retail trade, sector-level information about industries),  prices (commodities, consumer price indexes) and a lot more. Sources include the Federal Reserve, the Bureau of Labor Statistics, the Census Bureau, the Bureau of Economic Analysis, the Treasury Department, and a mix of other government and corporate sources from the US and around the world.

On their home page at https://fred.stlouisfed.org/ you can search for indicators or choose one of several options for browsing. The default dashboard shows you some of the most popular series and newest releases at a glance. Click on Civilian Unemployment Rate, and you retrieve a chart with monthly stats that stretch from the late 1940s to the present. Most of FRED’s plots highlight periods of recession since these have a clear impact on economic trends. You can modify the chart’s date range, change the frequency (monthly, quarterly, annually – varies by indicator), download the chart or the underlying data in a number of formats, and share a link to it. There are also a number of advanced customization features, such as adding other series to the chart. Directly below the chart are notes that provide a clear definition of the indicator and its source (in this case, the Bureau of Labor Statistics) and links to related tables and resources.

FRED - Chart of Civilian Unemployment Rate

The unemployment rate is certainly something that you’d expect to see, but once you browse around a bit you’ll be surprised by the mix of statistics and the level of detail. I happened to stumble across a monthly Condo Price Index for the New York City Metro Area.

Relative to other sources or portals, FRED is great for viewing and retrieving national (US and other countries) economic and fiscal data and charts gathered from many sources. It’s well suited for time-series data; there are lots of indexes and you can opt for seasonally adjusted or unadjusted values. Many of the series include data for large regions of the US, states, metro areas, and counties. The simplest way to find sub-national data is to do a search, and once you do you can apply filters for concepts, frequencies, geographies, and sources. FRED is not the place to go if you need data for small geographies below the county level. If you opt to create a FRED account (purely optional) you’ll be able to save and track indicators that you’re interested in and build your own dashboards.

If you’re interested in maps, visit FRED’s brother GeoFRED at https://geofred.stlouisfed.org/.  The homepage has a series of sample thematic maps for US counties and states and globally for countries. Choose any map, and once it opens you can change the geography and indicator to something else. You can modify the frequency, units, and time periods for many of the indicators, and you have basic options for customizing the map (colors, labels, legend, etc.) The maps are interactive, so you can zoom in and out and click on a place to see its data value. Most of the county-level data comes from the Census Bureau, but as you move up to states or metro areas the number of indicators and sources increase. For example, the map below shows individual income taxes collected per capita by state in 2018.

GeoFRED - State Income Tax

There’s a basic search function for finding specific indicators. Just like the charts, maps can be downloaded as static images, shared and embedded in websites, and you can download the data behind the map (it’s simpler to download the same indicator for multiple geographies using GeoFRED compared to FRED).

Take a few minutes and check it out. For insights and analyses of data published via FRED, visit FRED’s blog at https://fredblog.stlouisfed.org/.

Updated QGIS Tutorial for 3.4

I recently released an updated version of the manual and data I use for my day-long GIS Practicum, Introduction to GIS Using Open Source Software (Using QGIS). The manual has five chapters: a summary overview of GIS, basics of using the QGIS interface, GIS analysis that includes several geoprocessing and analysis functions, thematic mapping and map layout, and a summary of where to find data and resources for learning more. Chapters 2, 3, and 4 are broken down into sections with clear steps, followed by commentary that explains what we did and why. We cover much of the material in a single day, although you can space the lessons out into two days if desired.

I updated this version to move us from QGIS 2.18 Las Palmas to 3.4 Madeira, which are the former and current long term service releases. While the move from 2.x to 3.x involved a major rewrite of the code base (see the change log for details), most of the basics remain the same. While veteran users can easily navigate through the differences, it can be a stumbling block for new users if they are trying to learn a new version using an old tutorial with screens and tools that are slightly different. So it was time for an update!

My goal for this edition was to keep my examples in place but revise the steps based on changes in the interface. Most of the screenshots are new, and the substantive changes include: using the Data Manager for adding layers rather than the toolbar with tons of buttons, better support for xlsx and ods files which allowed me to de-emphasize xls and dbf files for attribute table joins, the addition of geopackages to the vector data mix, the loss of the Open Layers plugin and my revision to the web mapping section using OSM XYZ tiles, the disappearance of the setting that allowed you to disable on the fly projection, and the discontinuation of the stand-alone Data Browser. There were also changes to some tools (fixed distance and variable buffer tools are now united under one tool) and names of menus (Style menu has once again become the Symbology menu).

It’s hard to believe that this is my ninth edition of this tutorial. I try to update it once a year to keep in sync with the latest long term release, but fell a bit behind this year. QGIS 2.18 also survived for a bit longer than other releases, as the earlier 3.x versions went through lots of testing before ending up at 3.4. When it comes time for my tenth edition I may change the thematic mapping example in chapter 4 to something that’s global instead of US national, and in doing streamline the content. We’ll see if I have some time this summer.

Since I’m in update mode, I also fixed several links on the Resources page to cure creeping link rot.

LISA map of Broad Band Subscription by Household

Mapping US Census Data on Internet Access

ACS Data on Computers and the Internet

The Census Bureau recently released the latest five-year period estimates from the American Community Survey (ACS), with averages covering the years from 2013 to 2017.

Back in 2013 the Bureau added new questions to the ACS on computer and internet use: does a household have a computer or not, and if yes what type (desktop or laptop, smartphone, tablet, or other), and does a household have an internet subscription or not, and if so what kind (dial-up, broadband, and type of broadband). 1-year averages for geographies with 65,000 people or more have been published since 2013, but now that five years have passed there is enough data to publish reliable 5-year averages for all geographies down to the census tract level. So with this 2013-2017 release we have complete coverage for computer and internet variables for all counties, ZCTAs, places (cities and towns), and census tracts for the first time.

Summaries of this data are published in table S2801, Types of Computers and Internet Subscriptions. Detailed tables are numbered B28001 through B28010 and are cross-tabulated with each other (presence of computer and type of internet subscription) and by age, educational attainment, labor force status, and race. You can access them all via the American Factfinder or the Census API, or from third-party sites like the Census Reporter. The basic non-cross-tabbed variables have also been incorporated into the Census Bureau’s Social Data Profile table DP02, and in the MCDC Social profile.

The Census Bureau issued a press-release that discusses trends for median income, poverty rates, and computer and internet use (addressed separately) and created maps of broadband subscription rates by county (I’ve inserted one below). According to their analysis, counties that were mostly urban had higher average rates of access to broadband internet (75% of all households) relative to mostly rural counties (65%) and completely rural counties (63%). Approximately 88% of all counties that had subscription rates below 60 percent were mostly or completely rural.

Figure 1. Percentage of Households With Subscription to Any Broadband Service: 2013-2017[Source: U.S. Census Bureau]

Not surprisingly, counties with lower median incomes were also associated with lower rates of subscription. Urban counties with median incomes above $50,000 had an average subscription rate of 80% compared to 71% for completely rural counties. Mostly urban counties with median incomes below $50k had average subscription rates of 70% while completely rural counties had an average rate of 62%. In short, wealthier rural counties have rates similar to less wealthy urban counties, while less wealthy rural areas have the lowest rates of all. There also appear to be some regional clusters of high and low broadband subscriptions. Counties within major metro areas stand out as clusters with higher rates of subscription, while large swaths of the South have low rates of subscription.

Using GeoDa to Identify Broadband Clusters

I was helping a student recently with making LISA maps in GeoDa, so I quickly ran the data (percentage of households with subscription to any broadband service) through to see if there were statistically significant clusters. It’s been a couple years since I’ve used GeoDa and this version (1.12) is significantly more robust than the one I remember. It focuses on spatial statistics but has several additional applications to support basic data mapping and stats. The interface is more polished and the software can import and export a number of different vector and tabular file formats.

The Univariate Local Moran’s I analysis, also known as LISA for local indicators of spatial auto-correlation, identifies statistically significant geographic clusters of a particular variable. Once you have a polygon shapefile or geopackage with the attribute you want to study, you add it to GeoDa and then create a weights file (Tools menu) using the unique identifier for the shapes. The weights file indicates how individual polygons neighbor each other: queens contiguity classifies features as neighbors as long as they share a single node, while rooks contiguity classifies them as neighbors if they share an edge (at least two points that can form a line).

Once you’ve created and saved a weights file you can run the analysis (Shapes menu). You select the variable that you want to map, and can choose to create a cluster map, scatter plot, and significance map. The analysis generates 999 random permutations of your data and compares it to the actual distribution to evaluate whether clusters are likely the result of random chance, or if they are distinct and significant. Once the map is generated you can right click on it to change the number of permutations, or you can filter by significance level. By default a 95% confidence level is used.

The result for the broadband access data is below. The High-High polygons in red are statistically significant clusters of counties that have high percentages of broadband use: the Northeast corridor, much of California, the coastal Pacific Northwest, the Central Rocky Mountains, and certain large metro areas like Atlanta, Chicago, Minneapolis, big cities in Texas, and a few others. There is a relatively equal number of Low-Low counties that are statistically significant clusters of low broadband service. This includes much of the deep South, south Texas, and New Mexico. There are also a small number of outliers. Low-High counties represent statistically significant low values surrounded by higher values. Examples include highly urban counties like Philadelphia, Baltimore City, and Wayne County (Detroit) as well as some rural counties located along the fringe of metro areas. High-Low counties represent significant higher values surrounded by lower values. Examples include urban counties in New Mexico like Santa Fe, Sandoval (Albuquerque), and Otero (Alamogordo), and a number in the deep south. A few counties cannot be evaluated as they are islands (mostly in Hawaii) and thus have no neighbors.

LISA map of Broad Band Subscription by Household

LISA Map of % of Households that have Access to Broadband Internet by County (2013-2017 ACS). 999 permutations, 95% conf interval, queens contiguity

All ACS data is published at a 90% confidence level and margins of error are published for each estimate. Margins of error are typically higher for less populated areas, and for any population group that is small within a given area. I calculated the coefficient of variation for this variable at the county level to measure how precise the estimates are, and used GeoDa to create a quick histogram. The overwhelming majority had CV values below 15, which is regarded as being highly reliable. Only 16 counties had values that ranged from 16 to 24, which puts them in the medium reliability category. If we were dealing with a smaller population (for example, dial-up subscribers) or smaller geographies like ZCTAs or tracts, we would need to be more cautious in analyzing the results, and might have to aggregate smaller populations or areas into larger ones to increase reliability.

Wrap Up

The issue of the digital divide has gained more coverage in the news lately with the exploration of the geography of the “new economy”, and how technology-intensive industries are concentrating in certain major metros while bypassing smaller metros and rural areas. Lack of access to broadband internet and reliable wifi in rural areas and within older inner cities is one of the impediments to future economic growth in these areas.

You can download a shapefile with the data and results of the analysis described in this post.

Factorio forest landscape

Exploring New Worlds in Factorio

The first draft is finished and I sent my book off for review earlier this month, and I’ve been back to work full-time for two months now. It’s been a difficult transition, so I thought I’d write a more lighthearted post this month about imaginary geographic worlds (as luck would have it, the Geo NYC Meetup group is discussing fictional mapping next week).

I’ve always enjoyed top-down simulation games; I still have my original copy of SimCity from 1989, in the box with the diskettes. More recently, I started playing a top-down, world-exploration, operations management, logistical simulator game called Factorio. The premise is you are the sole survivor of a team of scientists and engineers who have crash landed on an unexplored world. Using the scrap metal of your ship, a few simple tools, and the abundant resources on the planet, your goal is to build a rocket to launch a satellite into space to alert the crew of a successive spaceship of your presence. Scattered across the planet are concentrations of resources: water, trees (for wood), stone, iron ore, copper ore, oil, coal, and uranium. With an ax and a few scavenged plates from the ship, you begin by building a stone furnace for smelting metals. You use your ax to mine some stone to build the furnace, some iron for smelting, and some coal for fuel. Once you’ve smelted some metal you can construct a drill to mine the materials and insert them into the smelter automatically.

Smelting the ore converts it into refined material: stone to bricks, iron ore to iron plates, and copper ore to copper plates. Initially you can take these materials and manually craft them to make products: iron plates become iron gear wheels, copper plates become copper wire, which in turn can be crafted to create higher order parts like electronic circuits and finished machine products. Ultimately you’ll construct assembly plants that take the necessary materials and build the products for you, and the outputs can be used as inputs for other products.

Factorio mining drills

Mining ore

Factorio smelters

Smelting ore to plates

Factorio assemblers

Assembling products

 

 

 

 

 

 

The game becomes a logistical puzzle, where you mine ores from various deposits and move them to be smelted, and then move the refined materials to different assembly plants to create higher-order products. You transport everything using conveyor belts and inserters, which grab materials from belts and insert them into the smelters, assemblers, and other structures. You construct pumps, boilers, and steam engines powered by coal or wood to generate electricity to power the entire factory, and in order to keep developing higher-order goods you combine certain materials to produce “science”; little colorful beakers of liquid that you move on belts to laboratories to keep research humming.

As the game and your research progresses you develop technology that allows you to better explore the world and access additional resources, as you’ll eventually deplete the original deposits near the factory. You can develop solar and nuclear power as cleaner electricity alternatives, drill and refine oil to create fuels and plastics, build cars to explore the landscape, and construct railroads to transport more distant materials to your base. As your factory expands you have to grapple with the logistical hurdles of moving products created at disparate ends of the plant together in order to create new products, forcing you to either plan ahead or reconfigure your layout as time passes (or build some drones to fly the materials around). The clock is always ticking as the game is played in real time (it’s not turn-based).

Factorio factory

Main Factorio screen showing portion of a factory and map layout

At some point you face a new problem: you are not alone on this planet. There are some large, scary-looking insect creatures living there that don’t like all the pollution that’s coming from your factory, and they don’t particularly like you. Once they become irritated enough they attack and chew up your factory, and you along with it. Sadly there is no negotiating with them (they’re not sentient), so some of your attention and resources must be spent on weapons. You can take a purely defensive approach, building walls and gun turrets to protect your base as well as armor and shields to protect yourself. Or you can barrel out in a tank or use artillery to destroy them as they encroach on your operations. You can also develop cleaner, less polluting technologies to irritate them less.

An additional challenge is that the game keeps changing. Even though it’s been out for several years Factorio is still in a beta phase, but given it’s maturity and update cycle it’s super stable. The developers are part of a small company in the Czech Republic who focus primarily on this game. Factorio is available for purchase via their website and via Steam for all operating systems, and has been downloaded over a millions of times. The fanatical fan base appreciates the ability to mod practically every aspect of the game, and they form a community that’s crucial to the game’s development through testing and feedback. Factorio is definitely a member of a new generation of games where part of the challenge is learning how to play it. I’ve crawled through the extensive wiki, scoured Reddit for advice, and watched several YouTube series to figure out how it works.

Regardless of how many times you’ve played it, there is always something new to tinker with. Many players enjoy the engineering and mathematical side of the game. Their goal is to build the most efficient system, perfectly balance inputs and outputs, and create the best ratios for production. Others go for scale, building the largest possible factory with the most throughput. There are railroaders who enjoy building the trains, and warriors who focus on combat with the voracious bugs. Beyond building the rocket, the game has a number of challenges that players attempt to master, and it can be played solo or multiplayer for gamers who want to work together or simply explore each other’s layouts and solutions.

As a geographer, I enjoy the actual worlds themselves and the unique challenge each environment presents. While you can create blueprints and use the same design for a railroad station or solar power generator over and over again, you’re forced to change your overall factory layout based on the location of resources and configuration of the terrain. Prior to launching a new game, you specify the general size, frequency, and richness of resources, trees, water, and enemy bugs, and you can keep generating maps until you find one you like. While many of the efficiency aficionados want flat playing surfaces, I enjoy the complexity of fitting your factory in around the oceans and forests, and the challenge of exploring and shipping in materials from far flung places.

The world itself is quite beautiful. The developers provide extensive details about the development and inner-workings of the game, including the processes for generating logical and realistic looking landscapes. There are lush deciduous forests in vibrant autumn colors, desert wastelands strewn with rocks, and clusters of baobab-like trees on the dry plains. Even though they’re just bits and bytes I limit what I harvest, because I hate chopping them down. Unlike the real world, mining ore is much less destructive and the material is simply scraped off the surface, leaving unblemished soil behind. A finite portion of the world is visible on the map when you begin the game, and the surrounding area is cloaked in darkness. You can reveal more of the terrain by building radar stations at your base, and can explore on foot or go further afield once you’ve constructed vehicles. The world has no end, and stretches into infinity.

Factorio forest landscape

Factorio has sparked my curiosity in unexpected ways. As I’m mining ores and moving them into smelters to produce metals, I started to wonder: what is smelting anyway? How do you actually extract metals from rocks? My exposure to chemistry was limited to my junior year of high school where I struggled with balancing formulas and memorizing the periodic table. Fortunately I discovered some fascinating books and videos that made the subject engaging. Material scientist Mark Miodownik’s Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World, is an accessible, informative, and often hilarious exploration of the materials we use everyday. You’ll learn the basic chemistry behind paper, iron, ceramics, even chocolate! Periodic Tales: A Cultural History of the Elements, from Arsenic to Zinc by Hugh Aldersey-Williams is perfect if you want to learn some basics about chemistry and material science from a historical science perspective. NOVA aired a solid three-part series a few years back called Treasures of the Earth that revealed the secrets behind gems, metals, and power sources.

I resisted the temptation to play for the year I was on sabbatical, as it’s too easy to get sucked into it. A few hours here and there throughout a month, and by the time I launch that rocket into space 30 hours have gone by! Initially I feel a bit guilty, sinking so much time into a game. But when you consider how much time the average person spends watching TV or looking at stupid stuff on their phone (4 hours and 2.5 hours respectively, EVERY DAY!), enjoying the occasional game that challenges your mind and sparks your imagination is a good alternative. Similar to the Minecraft phenomena, I think it has great potential as an educational tool for learning about logistics, planning, geology and materials science, and engineering. And for the geographers out there, there are infinite worlds to explore.

Factorio desert landscape

Lying with Maps and Census Data

I was recently working on some examples for my book where I discuss how census geography and maps can be used to intentionally skew research findings. I suddenly remembered Mark Monmonier’s classic How To Lie with Maps. I have the 2nd edition from 1996, and as I was adding it to my bibliography I wondered if there was a revised edition.

To my surprise, a 3rd edition was just published in 2018! This is an excellent book: it’s a fun and easy read that provides excellent insight into cartography and the representation of data with maps. There are concise and understandable explanations of classification, generalization, map projections and more with lots of great examples intended for map readers and creators alike. If you’ve never read it, I’d highly recommend it.

If you have read the previous edition and are thinking about getting the new one… I think the back cover’s tagline about being “fully updated for the digital age” is a little embellished. I found another reviewer who concurs that much of the content is similar to the previous edition. The last three chapters (about thirty pages) are new. One is devoted to web mapping and there is a nice explanation of tiling and the impact of scale and paid results on Google Maps. While the subject matter is pretty timeless, some more updated examples would have been welcome.

There are many to choose from. One of the examples I’m using in my book comes from a story the Washington Post uncovered in June 2017. Jared Kushner’s real estate company was proposing a new luxury tower development in downtown Jersey City, NJ, across the Hudson River from Manhattan. They applied for a program where they could obtain low interest federal financing if they built their development in an area were unemployment was higher than the national average. NJ State officials assisted them with creating a map of the development area, using American Community Survey (ACS) unemployment data at the census tract level to prove that the development qualified for the program.

The creation of this development area defies all logical and reasonable criteria. This affluent part of the city consists of high-rise office buildings, residential towers, and historic brownstones that have been refurbished. The census tract where the development is located is not combined with adjacent tracts to form a compact and contiguous area that functions as a unit, nor does it include surrounding tracts that have similar socio-economic characteristics. The development area does not conform to any local conventions as to what the neighborhoods in Jersey City are based on architecture, land use, demographics, or physical boundaries like major roadways and green space.

Jersey City Real Estate Gerrymandering Map

Census tracts that represent the “area” around a proposed real estate development were selected to concentrate the unemployed population, so the project could qualify for low interest federal loans.

Instead, the area was drawn with the specific purpose of concentrating the city’s unemployed population in order to qualify for the financing. The tract where the development is located has low unemployment, just like the tracts around it (that are excluded). It is connected to areas of high unemployment not by a boundary, but by a single point where it touches another tract diagonally across a busy intersection. The rest of the tracts included in this area have the highest concentration of unemployment and poverty in the city, and consists primarily of low-rise residential buildings, many of which are in poor condition. This area stretches over four miles away from the development site and cuts across several hard physical boundaries, such as an interstate highway that effectively separates neighborhoods from each other.

The differences between this development area and the actual area adjacent but excluded from the project couldn’t be more stark. Gerrymandering usually refers to the manipulation of political and voting district boundaries, but can also be used in other contexts. This is a perfect example of non-political gerrymandering, where areas are created based on limited criteria in order to satisfy a predefined outcome. These areas have no real meaning beyond this purpose, as they don’t function as real places that have shared characteristics, compact and contiguous boundaries, or a social structure that would bind them together.

The maps in the Post article high-lighted the tracts that defined the proposal area and displayed their unemployment rate. In my example I illustrate the rate for all the tracts in the city so you can clearly see the contrast between the areas that are included and excluded. What goes unmentioned here is that these census ACS estimates have moderate to high margins of error that muddy the picture even further. Indeed, there are countless ways to lie with maps!