data sources

Info about any spatial or attribute data sources

OSM Web Feature Service

OpenStreetMap Data with ArcGIS Pro and QGIS

A couple years ago I wrote a post that demonstrated how to use the QuickOSM plugin for QGIS to easily extract features from the OpenStreetMap (OSM). The OSM is a great source for free and open GIS data, especially for types of features that are not captured in government sources, and for parts of the world that don’t possess a free or robust GIS data infrastructure. I’ve been using ArcGIS Pro more extensively in my new job and was wondering how I could do the same thing: query features from the OSM based on keys and values (denoting feature type) and geographic area and extract them as a vector layer. I’m looking for straightforward solutions that I could use for answering questions from students (so no command line tricks or database stuff). In this post I’ll cover three approaches for achieving this in ArcGIS Pro, with references to QGIS.

File Approach

The most straightforward method would be to export data directly from the main OSM page by zooming into an area and hitting the Export button. This is a pretty blunt approach, as you have to be zoomed in pretty close and you grab every possible feature in the view. The “native” file format of OSM is the osm / pbf format; .osm is an XML file while .pbf is a compressed binary version of the osm. QGIS is able to handle these files directly; you just add them as a vector layer. ArcGIS Pro cannot. You have to download and install a special Data Interoperability extension, which is an esoteric thing that’s not part of the standard package and requires a special license from your site license coordinator.

A better and more targeted approach is to download pre-created extracts that are provided by a number of organizations listed in the OSM wiki. I started with Geofabrik in Germany, as it was a source I recognized. They package OSM data by geographic area and feature type. On their main page they list files that contain all features for each of the continents. These are enormous files, and as such they are only provided in the osm pbf format as shapefiles can’t effectively handle data that size. Even if you downloaded the osm pbf files and added them to QGIS, the software will struggle to render something that big.

But all is not lost; Geofabrik and many other providers package data in a shapefile format for smaller areas, provided that the size and number of features is not too great. For instance, on Geofabrik’s download page if you click on North America you’re presented with country extracts for that continent (see images below). You can get shapefiles for Greenland and Mexico, but not Canada or the US as the files are still too big. Click on US, and you’re presented with files for each of the states. No luck for California (too big), but the rest of states are small enough that you can get shapefiles for all of them.

Geofabrik OSM data: download continents
Default Geofrabrik OSM download page for continents. Click on a continent name…
Geofabrik OSM data downloads: countries in North America
…to access files for countries. Click on a country name…
Geofabrik OSM data downloads: states of the US
…to access files for states / provinces / admin divisions

I downloaded and unzipped the file for Rhode Island. It contains a number of individual shapefiles classified by type of feature: buildings, land use, natural, places, places of worship (pofw), points of interest (pois), railways, roads, traffic, transport, water, and waterways. Many of the files appear twice: files with an “a” suffix represent polygons (areas) while files without that suffix are points or lines. Some OSM features are stored as polygons when such detail is available, while others are represented as points.

For example, if I add the two places of workship files to a map, for some features you have the outline of the actual building, while for most you simply have a point. After adding the layers to the map, you’ll probably want to use Select by Attribute to select the features you want based on OSM tags with keys and values, and Select by Location in conjunction with a separate boundary file to pull data out for a smaller area. The Geofabrik OSM attribute table is limited to basic attributes: an OSM ID, feature code and class, and name. It’s also likely that you’ll want to unify the point and polygon features of the same type into one layer, as they’re usually mutually exclusive. Use the Centroid (Polygon) tool in the toolbox to turn the polygons into points, and the Merge tool to meld the two point layers together. In QGIS the comparable tools under the Vector menu are Centroids and Merge Vector Layers. WGS 84 is the default CRS for the layers.

ArcGIS Pro with OSM Places of Worship from Geofabrik
OSM Places of Worship. Some features are stored as points while others are polygons

Geofabrik is just one option. There are several others and they take different approaches for structuring their extracts. For example, BBBike.org organizes their layers by city for over 200 cities around the world, and they provide a number of additional formats beyond OSM PBF and shapefiles, such as Garmin GPS, GeoJSON, and CSV. They divide the data into fewer files, and if they don’t compile data for the area you’re interested in you can use a web-based tool to create a custom extract.

Plugin Approach

It would be nice to use a plugin, as that would allow you to specify a custom geographic area and retrieve just the specific features you want. QuickOSM works quite nicely for QGIS. Fortunately there is a good ArcGIS Pro solution called OSMquery. It works for both Pro and Desktop, tested for Pro 2.2 and Desktop 10.6. I’m using Pro 2.7 and the basic tool worked fine. It’s well documented, with good instructions for installation and use.

The plugin is written in Python and you add it as a tool to your ArcToolbox. Download the repo from the OSMquery GitHub as a ZIP file (click the green code button and choose Download ZIP). Save it in or near your ArcGIS project folders, and unzip it. In Pro, go into a project and open a Catalog Pane in the View ribbon. Right click on Toolbox to add a new one, and browse to the folder you unzipped to add the tool. There are two scripts in the box, a basic and an advanced version. The basic tool functioned without trouble for me. The advanced tool threw an error, probably some Python dependency issue (I didn’t investigate as the basic tool met my needs).

In the basic tool you choose the key and value for the features you want to extract; the dropdown menu is automatically populated with these options. For the geographic extent you can enter a place name, or you can use the extent of the current map window or of a layer in the project, or you can manually type in bounding box coordinates. Another nice option is you can transform the CRS of the extracted features from WGS 84 to another system, so it matches the CRS of layers in your existing project. Run the tool, and the features are extracted. If the features exist as both points and polygons, you get two separate files for each. If you choose, you can merge them together as described in the previous section; this is a bit tougher as the plugin approach yields a much wider selection of fields in the attribute table, and not all of the point and polygon attributes align. With the Merge tool in Pro you can select which attributes you want to hold on to, and common ones will be merged. QGIS is a bit messier in this regard, but in my earlier post I outlined a work-around using a spatial database.

OSMquery tool in ArcGIS Pro
The basic OSMquery tool in an ArcGIS Pro toolbox

Web Feature Service

This initially seemed to be the most promising route, but it turned out to be a dud. Like QGIS, Pro allows you to add OSM as a tiled base map. But ESRI also offers OSM as a web feature service: by hitting Add Data on the Map ribbon and searching the Living Atlas for “OpenStreetMap” you can select from a number of OSM web feature services, organized by continent and feature type. Once you add them to a map, you can select and click on individual features to see their name and feature type. The big problem is that you are not allowed to extract features from these layers, which leaves you with an enormous and heterogeneous mix of features for an entire continent. You can interact with the features, selecting by attribute and location in reference to other spatial layers, but that’s about it.

OSM web feature service in ArcGIS Pro
OSM web feature service in ArcGIS Pro

In Summary

I would recommend taking the step of downloading the OSMquery plugin for ArcGIS Pro if you want to take a highly targeted approach to OSM feature extraction (for QGIS users, enable the QuickOSM plugin). This approach is also best if you can’t download a pre-existing extract for your area because it’s too large or has too many features, and if you want to access the fullest possible range of attribute values. Otherwise, you can simply download one of the pre-created extracts, and use your software to winnow it down to what you need (or if you do need everything, the file approach makes more sense). Since the file-based option includes fewer attributes, converting polygon features to points and merging them with the other point features is a bit simpler.

Stamen Watercolor Map Tiles

Adding Basemaps to QGIS With Web Mapping Services

For this final post of 2020, I was looking back through recent projects for something interesting yet brief; I’ve been writing some encyclopedia-length posts lately and wanted to keep this one on the lighter side. In that vein, I’ve decided to share a short list of free web mapping services that I use as basemaps in QGIS (they’ll work in ArcGIS too). This has been on my mind as I’ve recently stumbled upon the OpenTopoMap, which is an alternate stylized version of the OpenStreetMap that looks pretty sharp.

See this earlier post for details, but in short, to connect to these services in QGIS:

QGIS Browser Panel
  1. Select the appropriate web map service type in the browser panel (usually WMS / WMTS or XYZ Tiles), right click, and add new connection.
  2. Give it a meaningful name, paste the appropriate URL into the URL box, click OK.
  3. In the browser panel drill down to see the service, and for WMS / WMTS layers you can drill down further to see specific layers you can add.
  4. Select the layer and drag it into the window, or select, right click, and add the layer to the project.
  5. If the resolution looks off, right click on a blank area of the toolbar and check the Tile Scale Panel. Use this to adjust the zoom for the web map. If the scale bar is greyed out you’ll need to set the map window to the same CRS as the map service: select the layer in the panel, right click, and choose set CRS – set project CRS from layer.
  6. Some web layers may render slowly if you’re zoomed out to the full extent, or even not at all if they contain many features or are super detailed. Conversely, some layers may not render if you’re zoomed too far in, as tiles may not be available at that resolution. Experiment!

If you’re an ArcGIS user see these concise instructions for adding various tile layers. This isn’t something that I’ve ever done, as ArcGIS already has a number of accessible basemaps that you can add.

In the list below, links for the service name take you to either the website version of the service, or to a list of additional layers that you can connect to. The URLs that follow are the actual connections to the service that you’ll use within your GIS package. If you use OSM, OTP, or Stamen in your maps, make sure to cite them (they use Creative Commons Licenses – follow links to their websites for details). The government sources are public domain, but you should still cite them anyway. Happy mapping, and happy holidays!

OpenStreetMap XYZ Tile (global)

http://tile.openstreetmap.org/{z}/{x}/{y}.png

OpenTopoMap XYZ Tile (global)

https://tile.opentopomap.org/{z}/{x}/{y}.png

Stamen XYZ Tile (global) see their website for examples; the image topping this post is from watercolor

http://tile.stamen.com/terrain/{z}/{x}/{y}.png
http://tile.stamen.com/toner/{z}/{x}/{y}.png
http://tile.stamen.com/watercolor/{z}/{x}/{y}.jpg

USGS National Map WMTS (global, but fine detail is US only)

Imagery:
https://basemap.nationalmap.gov/arcgis/rest/services/USGSImageryOnly/MapServer/WMTS/1.0.0/WMTSCapabilities.xml

Imagery & Topo:
https://basemap.nationalmap.gov/arcgis/rest/services/USGSImageryTopo/MapServer/WMTS/1.0.0/WMTSCapabilities.xml

Shaded Relief: 
https://basemap.nationalmap.gov/arcgis/rest/services/USGSShadedReliefOnly/MapServer/WMTS/1.0.0/WMTSCapabilities.xml

Topographic:
https://basemap.nationalmap.gov/arcgis/rest/services/USGSTopo/MapServer/WMTS/1.0.0/WMTSCapabilities.xml

US Census Bureau TIGERweb WMS (US only) see their website for older vintages

Current TIGER features:
https://tigerweb.geo.census.gov/arcgis/services/TIGERweb/tigerWMS_Current/MapServer/WMSServer 

Current physical features:
https://tigerweb.geo.census.gov/arcgis/services/TIGERweb/tigerWMS_PhysicalFeatures/MapServer/WMSServer

CEC North America LULC

Dataset Roundup: A Summary of Specialized Open Data Sources

I list the top free GIS data sources that I consistently use on my Resources page; these are general, foundational sources that can be used for many applications. In this post I’m going to summarize an eclectic mix of more specialized resources that I’ve used or that have been recommended to me over this past year. I’ve categorized these into GIS datasets, sub-national population data for countries (tabular data that can be joined to GIS vector layers), and historic socio-economic data for countries.

Geospatial Data

North American Land Change Monitoring System

Published by the Commission for Environmental Cooperation, these land use and land cover rasters (see photo at the top of this post) are derived from MODIS imagery at 250 meter resolution for earlier years and either Landsat-7 or RapidEye imagery at 30 meter resolution for later years for Canada, the United States, and Mexico in 2005, 2010, and 2015. There are layers for both land cover and land cover change over a 5-year period. Land cover is classified into 19 categories based on UN FAO standards. It’s easy to download as the layer is unified (no individual tiles to mess with and stitch together) and for the 2015 series you can choose a national file or one for the entire continent.

PRISM Climate Data

Published by the Northwest Alliance for Computational Science & Engineering at Oregon State University, the PRISM Climate Group publishes climate data for the United States. You can generate daily, monthly, or 30-year normal rasters for temperature (min, max, mean), precipitation, dew point, and a few other measures for the continental US. There are also some prepackaged files that were created for special projects that cover Alaska, Hawaii, and some of the US territories. The site is very easy to use (certainly compared to other sites that provide climate data) and beyond its research applications the data is good for teaching purposes, as files are straightforward to create, download, and interpret.

PRISM Mean Temp Map Oct 2020

Marineregions.org Marine Boundaries

I usually help people find vector boundaries for terrestrial features, and the oceans are an afterthought that appear as the absence of land. But what if you specifically needed features that represent oceans and seas? Marineregions.org, maintained by the Flanders Marine Institute, provides many sets of water-based boundaries that include maritime regions (legal sea zones around countries) as well as polygons that represent the boundaries of the oceans and largest seas (IHO Sea Areas, defined by the International Hydrographic Association). See the screenshot of this layer in QGIS below.

IHO Seas Layer in QGIS

GNSS Time Series

Produced by NASA JPL, this dataset can be used for measuring vertical land movement (VLM) and subsistence, primarily due to movement of the earth’s tectonic plates. The dataset contains over 2,000 GPS observation points or stations; the majority are in the US but there are a scattering of points throughout the world. The data file for geodetic positions and velocities contains two records for every station: the POS (position) record provides data for the latitude (N), longitude (E), and elevation (V) in mm. The VEL (velocity) indicates the rate of movement over the time period by direction (N / E) and elevation. The last three columns for both sets of records are margins of error for each value. The data file is in a fixed-width text format. To use it in GIS you need to parse the data into a tabular format and drop the header information. When plotting the coordinates, the CRS for the geodetic file is IGS14 (EPSG code 9019). If your CRS library doesn’t include this system, it is roughly equivalent to ITRF2014 (EPSG code 7789).

Subnational Population Data

IPUMS Terra

Are you looking for population or socio-economic data for the first-level administrative divisions (states, provinces, departments, districts, etc) for many different countries? IPUMS Terra is part of the IPUMS series at the Minnesota Population Center, Univ of Minnesota. The data has been gathered from census and statistical agencies of individual countries, or in some cases from estimates generated by the project. Choose the "Create Your Custom Dataset" option, then on the next screen choose "Start Extract Area Level Output". On the Extract Builder (see pic below) choose variables on the left, like Demographic and Total Population. Then under Datasets on the right you can choose countries and filter by year. Once you move on to the next screen, you can choose to harmonize the output or choose specific years, and choose your administrative level: national, ADM-1, or smallest available. You must register to use the IPUMS data series, but registration is free for educational and non-commercial use (as long as you cite IPUMS as the source).

IPUMS Terra Interface

Subnational Human Development Index

An alternative for first-level admin data is the Subnational Human Development Index published by the GlobalDataLab at the Institute for Management Research at Radboud University. There are far fewer variables and less customization compared to IPUMS Terra, but as such the site is smaller and easier to use. There are several different indices for measuring human development, but you can also access the following indicators: life expectancy, GNI per capita, expected and mean years of schooling, and population size in millions.

Historic Global Population and Economic Data

Maddison Project

Yes, that’s Maddison with two "ds". This project from the Groningen Growth and Development Centre at the University of Groningen generates comparative economic growth, income, and population data for countries over a long historical time span; back to the year AD 1 in a few cases, but for the most part from AD 1500 forward. They provide detailed documentation that explains how the dataset was created, and it’s easy to download in either an Excel or STATA format.

The World Countries Urban Population

This dataset consists of two spreadsheet files – one for the total urban population and another for the urban ratio of the population for countries going back to the year 1500. The dataset was created by Jonathan Fink-Jensen at Utrecht University and is held in the International Institute of Social History’s data repository. The repository contains a variety of other historic socio-economic datasets for many different countries.

USPS mailbox

The Trouble with ZIP Codes: Solutions for Data Analysis and Mapping

Since the COVID-19 pandemic began, I’ve received several questions about finding census data and boundary files for ZIP Codes (aka US postal codes), as many states are publishing ZIP Code-level data for cases and deaths. ZIP Codes are commonly used for summarizing address data, as it’s easy to do and most Americans are familiar with them. However, there are a number of challenges associated with using ZIP Codes as a unit of analysis that most people are unaware of (until they start using them). In this post I’ll summarize these challenges and provide some solutions.

The short story is: you can get boundary files and census data from the decennial census and 5-year American Community Survey (ACS) for ZIP Code Tabulation Areas (ZCTAs, pronounced zicktas) which are approximations of ZIP Codes that have delivery areas. Use any census data provider to get ZCTA data: data.census.gov, Census Reporter, Missouri Census Data Center, NHGIS, or proprietary library databases like PolicyMap or the Social Explorer. The longer story: if you’re trying to associate ZIP Code-level data with census ZCTA boundary files or demographic data, there are caveats. I’ll cover the following issues in detail:

  1. ZIP Codes are actually not areas with defined boundaries, and there are no official USPS ZIP Code maps. Areas must be derived using address files. The Census Bureau has done this in creating ZIP Code Tabulation Areas (ZCTAs).
  2. The Census Bureau publishes population data by ZCTA and boundary files for them. But ZCTAs are not strictly analogous with ZIP Codes; there isn’t a ZCTA for every ZIP Code, and if you try to associate ZIP data with them some of your records won’t match. You need to crosswalk your ZIP Code data to the ZCTA-level to prevent this.
  3. ZCTAs do not nest or fit within any other census geographies, and the postal city name associated with a ZIP Code does not correlate with actual legal or municipal areas. This can make selecting and downloading ZIP Code data for a given area difficult.
  4. ZIP Codes were designed for delivering mail, not for studying populations. They vary tremendously in size, shape, and population.
  5. Analyzing data at either the ZIP Code or ZCTA level over time is difficult to impossible.
  6. ZIP Code and ZCTA numbers must be saved as text in data files, and not as numbers. Otherwise codes that have leading zeros get truncated, and the code becomes incorrect.

ZIP Codes versus ZCTAs and Boundaries

Contrary to popular belief, ZIP Codes are not areas and the US Postal Service does not delineate boundaries for them. They are simply numbers assigned to ranges of addresses along street segments, and the codes are associated with a specific post office. When we see ZIP Code boundaries (on Google Maps for example), these have been derived by creating areas where most addresses share the same ZIP Code.

The US Census Bureau creates areal approximations for ZIP Codes called ZIP Code Tabulation Areas or ZCTAs. The Bureau assigns census blocks to a ZIP number based on the ZIP that’s used by a majority of the addresses within each block, and aggregates blocks that share the same ZIP to form a ZCTA. After this initial assignment, they make some modifications to aggregate or eliminate orphaned blocks that share the same ZIP number but are not contiguous. ZCTAs are delineated once every ten years in conjunction with the decennial census, and data from the decennial census and the 5-year American Community Survey (ACS) are published at the ZCTA-level. You can download ZCTA boundaries from the TIGER / Line Shapefiles page, and there is also a generalized cartographic boundary file for them.

Crosswalking ZIP Code Data to ZCTAs

There isn’t a ZCTA for every ZIP Code. Some ZIP Codes represent large clusters of Post Office boxes or are assigned to large organizations that process lots of mail. As census blocks are aggregated into ZCTAs based on the predominate ZIP Code for addresses within the block, these non-areal ZIPs fall out of the equation and we’re left with ZCTAs that approximate ZIP Codes for delivery areas.

As a result, if you’re trying to match either your own summarized address data or sources that use ZIP Codes as the summary level (such as the Census Bureau’s Business Patterns and Economic Census datasets), some ZIP Codes will not have a matching ZCTA and will fall out of your dataset.

To prevent this from happening, you can aggregate your ZIP Code data to ZCTAs prior to joining it to boundary files or other datasets. The UDS Mapper project publishes a ZIP Code to ZCTA Crosswalk file that lists every ZIP Code and the ZCTA it is associated with. For the ZIP Codes that don’t have a corresponding area (the PO Box clusters and large organizations), these essentially represent points that fall within ZCTA polygons. Join your ZIP-level data to the ZIP Code ID in the crosswalk file, and then group or summarize the data using the ZCTA number in the crosswalk. Then you can match this ZCTA-summarized data to boundaries or census demographic data at the ZCTA-level.

ZIP Code to ZCTA Crosswalk

UDS ZIP Code to ZCTA Crosswalk. ZIP Code 99501 is an areal ZIP Code with a corresponding ZCTA number, 99501. ZIP Code 99520 is a post office or large volume customer that falls inside ZCTA 99501, and thus is assigned to that ZCTA.

Identifying ZIPs and ZCTAs within Other Areas

ZCTAs are built from census blocks and nest within the United States; they do not fit within any other geographies like cities and towns, counties, or even states. The boundaries of a ZCTA will often cross these other boundaries, so for example a ZCTA may fall within two or three different counties. This makes it challenging to select and download census data for all ZCTAs in a given area.

You can get lists of ZIP Codes for places, for example by using the MCDC’s ZIP Code Lookup. The problem is, the postal city that appears in addresses and is affiliated with a ZIP Code does not correspond with cities as actual legal entities, so you can’t count on the name to select all ZIPs within a specific place. For example, my hometown of Claymont, Delaware has its own ZIP Code, even though Claymont is not an incorporated city with formal, legal boundaries. Most of the ZIP Codes around Claymont are affiliated with Wilmington as a place, even though they largely cover suburbs outside the City of Wilmington; the four ZIP Codes that do cover the city cross the city boundary and include outside areas. In short, if you select all the ZIP Codes that have Wilmington, DE as their place name, they actually cover an area that’s much larger than the City of Wilmington. The Census Bureau does not associate ZCTAs with place names.

ZCTAs and Places in northern Delaware

Lack of correspondence between postal city names and actual city boundaries. Most ZCTAs with the prefix 198 are assigned to Wilmington as a place name, even though many are partially or fully outside the city.

So how can you determine which ZIP Codes fall within a certain area? Or how they do (or don’t) intersect with other areas? You can overlay and eyeball the areas in TIGERweb to get a quick idea. For something more detailed, here are three options:

  1. The Missouri Census Data Center’s Geocorr application lets you calculate overlap between a source geography and a target geography using either total population or land area for any census geographies. So in a given state, if you select ZCTAs as a source, and counties as the target, you’ll get a list that displays every ZCTA that falls wholly or partially within each county. An allocation factor indicates the percentage of the ZCTA (population or land) that’s inside and outside a county, and you can make decisions as to whether to include a given ZCTA in your study area or not. If a ZCTA falls wholly inside one county, there will be only one record with an allocation factor of 1. If it intersects more than one county, there will be a record with an allocation factor for each county.
  2. The US Department of Housing and Urban Development (HUD) publishes a series of ZIP Code crosswalk files that associates ZIP Codes with census tracts, counties, CBSAs (metropolitan areas), and congressional districts. They create these files by geocoding all addresses and calculating the ratio of residential, business, and other addresses that fall within each of these areas and that share the same ZIP Code. The files are updated quarterly. You can use them to select, assign, or apportion ZIP Codes to a given area. There’s a journal article that describes this resource in detail.
  3. Some websites allow you to select all ZCTAs that fall within a given geography when downloading data, essentially by selecting all ZCTAs that are fully or partially within the area. The Census Reporter allows you to do this: search for a profile for an area, click on a table of interest, and then subdivide the areas by smaller areas. You can even look at a map to see what’s been selected. data.census.gov currently does not provide this option; you have to select ZCTAs one by one (or if you’re using the census API, you’ll need to create a list of ZCTAs to retrieve).

MCDC Geocorr

Sample output from MCDC Geocorr. ZCTAs 08251 and 08260 fall completely within Cape May County, NJ. ZCTA 08270’s population is split between Cape May (92.4%) and Atlantic (7.6%) counties. The ZCTA names are actually postal place names; these ZCTAs cover areas that are larger than these places.

Do You Really Need to Use ZIP Codes?

ZIP Codes were an excellent mid-20th century solution for efficiently processing and delivering mail that continues to be useful for that purpose. They are less ideal for studying populations or other forms of human activity. They vary tremendously in size, shape, and population which makes them inconsistent as a unit of analysis. They have no legal or administrative meaning or function, other than delivering mail. While all American’s are familiar with them, they do not have any relevant social meaning. They don’t represent neighborhoods, and when you ask someone where they’re from, they won’t say “19703”.

So what are your other options?

  1. If you don’t have to use ZIP Code or ZCTA data for your project, don’t. For the United States as a whole, consider using counties, PUMAs, or metropolitan areas. Within states: counties, PUMAs, and county subdivisions. For smaller areas: municipalities, census tracts, or aggregates of census tracts.
  2. If you have the raw, address-based data, consider geocoding it. Once you geocode an address, you can use GIS to assign it to any type of geography that you have a boundary file for (spatial join), and then you can aggregate it to that geography. Some geocoders even provide geographies like counties or tracts in the match result. If your data is sensitive, strip all the attributes out except for the address and a serial integer to use as an ID, and after geocoding you can associate the results back to your original data using that ID. The Census Geocoder is free, requires no log in, allows you to do batches of 1,000 addresses at a time, and forces you to use these safety precautions. For bigger jobs, there’s an API.
  3. Sometimes you’ll have no choice and must use ZIP Code / ZCTA data, if what you’re interested in studying is only provided in that summary form, or if there are privacy concerns around geocoding the raw address data. You may want to modify the ZCTA geography for your area to aggregate smaller ZCTAs into larger ones surrounding them, for both visual display and statistical analysis. For example, in New York City there are several ZCTAs that cover only one city and census block, as they’re occupied by one large office building that processes a lot of mail (and thus have their own ZIP number). Also, unlike most census geographies, ZCTAs have large holes in them. Any area that does not have streets and thus no addresses isn’t included in a ZCTA. In urban areas, this means large parks and cemeteries. In rural areas, vast tracts of unpopulated forest, desert, or mountain terrain. And large bodies of water in every place.

Midtown ZCTAs

One-block ZCTAs in Midtown Manhattan, NYC that have either low or zero population.

Analyzing ZIP Code Data Over Time…

In short – forget it. The Census Bureau introduced ZCTAs in the year 2000, and in 2010 they modified their process for creating them. For a variety of reasons, they’re not strictly compatible. ACS data for ZCTAs wasn’t published until 2013. Even the economic datasets don’t go that far back; the ZIP Code Business Patterns didn’t appear until the early 1990s. Use areas that have more longevity and are relatively stable: counties, census tracts.

Why Do my ZIP Codes Look Wrong in Excel?

Regardless of whether you’re using a spreadsheet, database, or scripting language, always make sure to define ZIP / ZCTA columns as strings or text, and not as numeric types. ZIP Codes and ZCTAs begin with zeros in several states. Columns that contain ZIP / ZCTA codes must be saved as text to preserve the 5-digit code. If they’re saved as numbers, the leading zeros are dropped and the numbers are rendered incorrectly. This often happens if you’re working with data in a CSV file and you click on it to open it in Excel. In parsing the CSV, Excel assumes the ZIP / ZCTA field is a number and saves it as a number, which drops the zero and truncates the code. To prevent this from happening: open Excel to a blank project, go to the Data ribbon, click the button to import text data, choose delimited text on the import screen, choose the delimiter (comma or tab, etc), and when prompted you can select the ZIP / ZCTA column and designate it as text so that it imports properly.

Importing text files in Excel

To import CSV files in Excel, go to the Data ribbon and under Get External Data select From Text.

Conclusion

That’s all you ever (or maybe never) wanted to know about ZIP Codes and ZCTAs! For more information see the Census Bureau’s page about ZCTAs, a thorough write up by the Missouri Census Data Center, and these informative and fun blog posts from PolicyMap (complete with photos of Mr. ZIP). I wrote an article a few years back that demonstrates how to use some of these resources (the UDS mapper file, Geocorr) to process ZIP data with SQL and python. And of course, check out my book, Exploring the U.S. Census: Your Guide to America’s Data, to explore these concepts and resources in greater detail with hands-on exercises.

Percentage of Children in Households Without the Internet

Kids with No Internet at Home: Data Processing for US Census Mapping

In this post I’ll demonstrate some essential data processing steps prior to joining census American Community Survey (ACS) tables downloaded from data.census.gov to TIGER shapefiles, in order to create thematic maps. I thought this would be helpful for students in my university who are now doing GIS-related courses from home, due to COVID-19. I’ll illustrate the following with Excel and QGIS: choosing an appropriate boundary file for making your map, manipulating geographic id codes (GEOIDs) to insure you can match data file to shapefile, prepping your spreadsheet to insure that the join will work, and calculating new summaries and percent totals with ACS formulas. Much of this info is drawn from the chapters in my book that cover census geography (chapter 3), ACS data (chapter 6), and GIS (chapter 10). I’m assuming that you already have some basic spreadsheet, GIS, and US census knowledge.

For readers who are not interested in the technical details, you still may be interested in the map we’ll create in this example: how many children under 18 lack access to a computer with internet access at home? With COVID-19 there’s a sudden expectation that all school children will take classes remotely from home. There are 73.3 million children living in households in the US, and approximately 9.3 million (12.7%) either have no computer at home, or have a computer but no internet access. The remaining children have a computer with either broadband or dial-up at home. Click on the map below to explore the county distribution of the under 18 population who lack internet access at home, or follow this link: https://arcg.is/0TrGTy.

arcgis_webmap

Click on the Map to View Full Screen and Interact

Preliminaries

First, we need to get some ACS data. Read this earlier post to learn how to use data.census.gov (or for a shortcut download the files we’re using here). I downloaded ACS table B28005 Age by Presence of a Computer and Types of Internet Subscription in Household at the county-level. This is one of the detailed tables from the latest 5-year ACS from 2014-2018. Since many counties in the US have less than 65,000 people, we need to use the 5-year series (as opposed to the 1-year) to get data for all of them. The universe for this table is the population living in households; it does not include people living in group quarters (dormitories, barracks, penitentiaries, etc.).

Second, we need a boundary file of counties. You could go to the TIGER Line Shapefiles, which provides precise boundaries of every geographic area. Since we’re using this data to make a thematic map, I suggest using the Cartographic Boundary Files (CBF) instead, which are generalized versions of TIGER. Coastal water has been removed and boundaries have been smoothed to make the file smaller and less detailed. We don’t need all the detail if we’re making a national-scale map of the US that’s going on a small screen or an 8 1/2 by 11 piece of paper. I’m using the medium (5m) generalized county file for 2018. Download the files, put them together in a new folder on your computer, and unzip them.

TIGER Line shapefile

TIGER Line shapefile

CBF shapefile

CBF shapefile

GEOIDs

Downloads from data.census.gov include three csv files per table that contain: the actual data (data_with_overlays), metadata (list of variable ids and names), and a description of the table (table_title). There are some caveats when opening csv files with Excel, but they don’t apply to this example (see addendum to this post for details). Open your csv file in Excel, and save it as an Excel workbook (don’t keep it in a csv format).

The first column contains the GEOID, which is a code that uniquely identifies each piece of geography in the US. In my file, 0500000US28151 is the first record. The part before ‘US’ indicates the summary level of the data, i.e. what the geography is and where it falls in the census hierarchy. The 050 indicates this is a county. The part after the ‘US’ is the specific identifier for the geography, known as an ANSI / FIPS code: 28 is the state code for Mississippi, and 151 is the county code for Washington County, MS. You will need to use this code when joining this data to your shapefile, assuming that the shapefile has the same code. Will it?

That depends. There are two conventions for storing these codes; the full code 0500000US28151 can be used, or just the ANSI / FIPS portion, 28151. If your shapefile uses just the latter (find out by adding the shapefile in GIS and opening its attribute table), you won’t have anything to base the join on. The regular 2018 TIGER file uses just the ANSI / FIPS, but the 2018 CBF has both the full GEOID and the ANSI FIPS. So in this case we’re fine, but for the sake of argument if you needed to create the shorter code it’s easy to do using Excel’s RIGHT formula:

Excel formula: RIGHT

The formulas RIGHT, LEFT, and MID are used to return sub-strings of text

The formulas reads X characters from the right side of the value in the cell you reference and returns the result. You just have to count the number of characters up to the “S’ in the “US”. Copy and paste the formula all the way down the column. Then, select the entire column, right click and chose copy, select it again, right click and choose Paste Special and Values (in Excel, the little clipboard image with numbers on top of it). This overwrites all the formulas in the column with the actual result of the formula. You need to do this, as GIS can’t interpret your formulas. Put some labels in the two header spaces, like GEO_ID2 and id2.

Excel: Paste Special

Copy a column, and use Paste Special – Values on top of that column to overwrite formulas with values

Subsets and Headers

It’s common that you’ll download census tables that have more variables than you need for your intended purpose. In this example we’re interested in children (people under 18) living in households. We’re not going to use the other estimates for the population 18 to 64 and 65 and over. Delete all the columns you don’t need (if you ever needed them, you’ve got them saved in your csv as a backup).

Notice there are two header rows: one has a variable ID and the other has a label. In ACS tables the variables always come in pairs, where the first is the estimate and the second is the margin of error (MOE). For example, in Washington County, Mississippi there are 46,545 people living in households +/- 169. Columns are arranged and named to reflect how values nest: Estimate!!Total is the total number of people in households, Estimate!!Total!!Under 18 years is the number people under 18 living in households, which is a subset of the total estimate.

The rub here is that we’re not allowed to have two header rows when we join this table to our shapefile – we can only have one. We can’t keep the labels because they’re too long – once joined, the labels will be truncated to 10 characters and will be indistinguishable from each other. We’ll have to delete that row, leaving us with the cryptic variable IDs. We can choose to keep those IDs – remember we have a separate metadata csv file where we can look up the labels – or we can rename them. The latter is feasible if we don’t have too many. If you do rename them, you have to keep them short, no more than 10 characters or they’ll be truncated. You can’t use spaces (underscores are ok), any punctuation, and can’t begin variables names with a number. In this example I’m going to keep the variable IDs.

Two odd gotchas: first, find the District of Columbia in your worksheet and look at the MOE for total persons in households (variable 001M). There is a footnote for this value, five asterisks *****. Replace it with a zero. Keep an eye out for footnotes, as they wreak havoc. If you ever notice that a numeric column gets saved as text in GIS, it’s probably because there’s a footnote somewhere. Second, change the label for the county name from NAME to GEO_NAME (our shapefile already has a column called NAME, and it will cause problems if we have duplicates). If you save your workbook now, it’s ready to go if you want to map the data in it. But in this example we have some more work to do.

Create New ACS Values

We want to map the percentage of children that do not have access to either a computer or the internet at home. In this table these estimates are distinct for children with a computer and no internet (variable 006), and without a computer (variable 007). We’ll need to aggregate these two. For most thematic maps it doesn’t make sense to map whole counts or estimates; naturally places that have more people are going to have more computers. We need to normalize the data by calculating a percent total. We could do this work in the GIS package, but I think it’s easier to use the spreadsheet.

To calculate a new estimate for children with no internet access at home, we simply add the two values together (006_E and 007_E). To calculate a new margin of error, we take the square root of the sum of the squares for the MOEs that we’re combining (006_M and 007_M). We also use the ROUND formula so our result is a whole number. Pretty straightforward:

Excel Sum of Squares

When summing ACS estimates, take the square root of the sum of the squares for each MOE to calculate a MOE for the new estimate.

To calculate a percent total, divide our new estimate by the number of people under 18 in households (002_E). The formula for calculating a MOE for a percent total is tougher: square the percent total and the MOE for the under 18 population (002_M), multiply them, subtract that result from the MOE for the under 18 population with no internet, take the square root of that result and divide it by the under 18 population (002_E):

MOE for percentage

The formula for calculating the MOE for a proportion includes: the percentage, MOE for the subset population (numerator), and the estimate and MOE for the total population (denominator)

In Washington County, MS there are 3,626 +/- 724 children that have no internet access at home. This represents 29.4% +/- 5.9% of all children in the county who live in a household. It’s always a good idea to check your math: visit the ACS Calculator at Cornell’s Program for Applied Demographics and punch in some values to insure that your spreadsheet formulas are correct.

You should scan the results for errors. In this example, there is just one division by zero error for Kalawao County in Hawaii. In this case, replace the formula with 0 for both percentage values. In some cases it’s also possible that the MOE proportion formula will fail for certain values. Not a problem in our example, but if it does the solution is to modify the formula for the failed cases to calculate a ratio instead. Replace the percentage in the formula with the ratio (the total population divided by the subset population) AND change the minus sign under the square root to a plus sign.

Some of these MOE’s look quite high relative to the estimate. If you’d like to quantify this, you can calculate a coefficient of variation for the estimate (not the percentage). This formula is straightforward: divide the MOE by 1.645, divide that result by the estimate, and multiply by 100:

Calculate coefficient of variation

A CV can be used to gauge the reliability of an estimate

Generally speaking, a CV value between 0-15 indicates that as estimate is highly reliable, 12-34 is of medium reliability, and 35 and above is low reliability.

That’s it!. Make sure to copy the columns that have the formulas we created, and do a paste-special values over top of them to replace the formulas with the actual values. Some of the CV values have errors because of division by zero. Select the CV column and do a find and replace, to find #DIV/0! and replace it with nothing. Then save and close the workbook.

For more guidance on working with ACS formulas, take a look at this Census Bureau guidebook, or review Chapter 6 in my book.

Add Data to QGIS and Join

In QGIS, we select the Data Source Manager buttonQGIS Data Source Manager, and in the vector menu add the CBF shapefile. All census shapefiles are in the basic NAD83 system by default, which is not great for making a thematic map.  Go to the Vector Menu – Data Management Tools – Reproject Layer. Hit the little globe beside Target CRS. In the search box type ‘US National’, select the US National Atlas Equal Area option in the results, and hit OK. Lastly, we press the little ellipses button beside the Reprojected box, Save to File, and save the file in a good spot. Hit Run to create the file.

In the layers menu, we remove the original counties file, then select the new one (listed as Reprojected), right click, Set CRS, Set Project CRS From Layer. That resets our window to match the map projection of this layer. Now we have a projected counties layer that looks better for a thematic map. If we right click the layer and open its attribute table, we can see that there are two columns we could use for joining: AFFGEOID is the full census code, and GEOID is the shorter ANSI / FIPS.

Hit the Data Source Manager button again, stay under the vector menu, and browse to add the Excel spreadsheet. If our workbook had multiple sheets we’d be prompted to choose which one. Close the menu and we’ll see the table in the layers panel. Open it up to insure it looks ok.

To do a join, select the counties layer, right click, and choose properties. Go to the Joins tab. Hit the green plus symbol at the bottom. Choose the spreadsheet as the join layer, GEO_ID as the join field in the spreadsheet, and AFFGEOID as the target field in the counties file. Go down and check Custom Field Name, and delete what’s in the box. Hit OK, and OK again in the Join properties. Open the attribute table for the shapefile, scroll over and we should see the fields from the spreadsheet at the end (if you don’t, check and verify that you chose the correct IDs in the join menu).

QGIS Join Menu

QGIS Map

We’re ready to map. Right click the counties and go to the properties. Go to the Symbology tab and flip the dropdown from Single symbol to Graduated. This lets us choose a Column (percentage of children in households with no internet access) and create a thematic map. I’ve chosen Natural Breaks as the Mode and changed the colors to blues. You can artfully manipulate the legend to show the percentages as whole numbers by typing *100 in the Column box beside the column name, and adding a % at the end of the Legend format string. I also prefer to alter the default settings for boundary thickness: click the Change button beside Symbol, select Simple fill, and reduce the width of the boundaries from .26 to .06, and hit OK.

QGIS Symbology Menu

There we have a map! If you right click on the counties in the layers panel and check the Show Feature Count box, you’ll see how many counties fall in each category. Of course, to make a nice finished map with title, legend, and inset maps for AK, HI, and PR, you’d go into the Print Layout Manager. To incorporate information about uncertainty, you can add the county layer to your map a second time, and style it differently – maybe apply crosshatching for all counties that have a CV over 34. Don’t forget to save your project.

QGIS Map

Percentage of Children in Households without Internet Access by County 2014-2018

How About that Web Map?

I used my free ArcGIS Online account to create the web map at the top of the page. I followed all the steps I outlined here, and at the end exported the shapefile that had my data table joined to it out as a new shapefile; in doing so the data became fused to the new shapefile. I uploaded the shapefile to ArcGIS online, chose a base map, and re-applied the styling and classification for the county layer. The free account includes a legend editor and expression builder that allowed me to show my percentages as fractions of 100 and to modify the text of the entries. The free account does not allow you to do joins, so you have to do this prep work in desktop GIS. ArcGIS Online is pretty easy to learn if you’re already familiar with GIS. For a brief run through check out the tutorial Ryan and I wrote as part of my lab’s tutorial series.

Addendum – Excel and CSVs

While csv files can be opened in Excel with one click, csv files are NOT Excel files. Excel interprets the csv data (plain text values separated by commas, with records separated by line breaks) and parses it into rows and columns for us. Excel also makes assumptions about whether values represents text or numbers. In the case of ID codes like GEOIDs or ZIP Codes, Excel guesses wrong and stores these codes as numbers. If the IDs have leading zeros, the zeros are dropped and the codes become incorrect. If they’re incorrect, when you join them to a shapefile the join will fail. Since data.census.gov uses the longer GEOID this doesn’t happen, as the letters ‘US’ are embedded in the code, which forces Excel to recognize it as text. But if you ever deal with files that use the shorter ANSI / FIPS you’ll run into trouble.

Instead of clicking on csvs to open them in Excel: launch Excel to a blank workbook, go to the data ribbon and choose import text files, select your csv file from your folder system, indicate that it’s a delimited text file, and select your ID column and specify that it’s text. This will import the csv and save it correctly in Excel.