games

Signals

The Role of Geography in Video Games

I’ve suffered from a bit of the blues in this new year, so two weekends ago I logged into Steam and bought a new game to relax a little. It’s been a few years since I’ve bought a new game, and in playing this one and perusing my existing collection I realized they all had one thing in common: geography plays a central role in all of them. So in this first post of the year, I’ll explore the role of geography in video games using examples from my favorites.

Terrain and Exploration in 4X Games

My latest purchase is Signals by MKDB Studios, an indie husband and wife developer team in the UK. It can be classified as a “casual” game, in that it’s: easy to learn and play yet possesses subtle complexity, is relatively relaxing in that it doesn’t require constant action and mental exertion, and you can finish a scenario or round in an hour or so. In Signals, you are part of a team that has discovered an alien signaling device on a planet. The device isn’t working; fixing it requires setting up a fully functional research station adjacent to the device, so you can unlock its secrets. The researchers need access to certain key elements that you must discover and mine. The planet you’re on doesn’t have these resources, so you’ll need to explore neighboring systems in the sector and beyond to find and bring them back.

Space travel is expensive, and the further you journey the more credits (money) you’ll need. To fund travel to neighboring systems in search of the research components (lithium, silicon, and titanium) you can harvest and sell a variety of other resources including copper, iron, aluminum, salt, gold, gems, diamonds, oil, and plutonium. As you flood the market with resources their value declines, yielding diminishing returns. You must be strategic in hopping from planet to planet and deciding what to harvest and sell. Mining resources incurs initial fixed costs for building harvesters (one per resource patch), a solar array for powering them (which can only cover a small area), and a trade post for moving resources to the market (one per planet).

Signals Terrain
Terrain view on Signals. Harvesters extracting resources in the center, other resource patches to the right

The game has two distinct views: one displays the terrain of the planet you’re on, while the other is a map of the sector(s) with different solar systems, so you can explore the planets and their resources and make travel plans. Different terrain provides different resources and imposes limits on game play. You are precluded from constructing buildings on water and mountains, and must clear forests if you wish to build on forested spaces. Terrain varies by type of planet: habitable Earth-like, red Mars-like, ice worlds, and desert worlds. The type of world influences what you will find in terms of resources; salt is only found on habitable worlds, while iron is present in higher quantities on Mars-like worlds. Video games, like maps, are abstractions of reality. The planet view shows you just a small slice of terrain that stands in for the entire world, so that the game can emphasize the planet hopping concept that’s central to its design. The other view – the sector map – is used for navigation and reference, keeping track of where you are, where you’ve been, and where you should go next.

The use of terrain and the role of physical geography are key aspects in simulators (like SimCity, an old favorite) and the so-called 4X games which focus on exploration, mining, trading, and fighting, although not all games employ all four aspects (Signals has no fighting or conquest component). Another example of a 4X game is Factorio by Wube Software, which I’ve written about previously. Like Signals, exploring terrain and mining resources are central to the game play. Similarities end there, as Factorio is anything but a casual game. It requires a significant amount of research and experimentation to learn how to play, which means consulting wikis, tutorials, and YouTube. It also takes a long time – 30 to 40 hours to complete one game!

The action in Factorio occurs on a single planet, where you’re looking for resources to mine to build higher order goods in factories, that you turn into even higher order products as you unlock more technologies by conducting research, with the ultimate goal of constructing a rocket to get off the planet. There are also two map views: the primary terrain view that you navigate as the player, and an overview map displaying the extent of the planet that you’ve explored. You begin with good knowledge of what lies around you, as you captured this info before your spaceship crashed and marooned you here. Beyond that is simply unknown darkness. To reveal it, you physically have to go out and explore, or build radar devices that gradually expand your knowledge. The terrain imposes limits on building and movement; water can’t be traversed or built upon, canyons block your path, and forests slow movement and prevent construction unless you chop them down (or build elsewhere). The world generated in Factorio is endless, and as you use up resources you have to push outward to find more; you can build vehicles to travel more quickly, while conveyor belts and trains can transport resources and products to and around your factory; this growing logistical puzzle forms a large basis of the game.

Factorio
Mining drills in Factorio extracting stone. Belts transport resources short distances, while trains cover longer distances.

The role of terrain and exploration has long been a mainstay in these kinds of games. Thanks to DOSbox (an emulator that let’s you run DOS and DOS programs on any OS), I was recently playing the original Sid Meier’s Civilization from 1991 by Microprose. This game served as a model for many that followed. Your small band of settlers sets out in 4000 BC, to found the first city for your particular civilization. You can see the terrain immediately around you, but the rest of the world is shrouded in darkness. Moving about slowly reveals more of the world, and as you meet other civs you can exchange maps to expand your knowledge. The terrain – river basins, grasslands, deserts, hills, mountains, and tundra – influences how your cities will grow and develop based on the varying amount of food and resources it produces. Terrain also influences movement; it is tougher and takes longer to move over mountains versus plains, and if you construct roads that will increase speed and trade. The terrain also influences attack and defense capabilities for military units…

Original Civilization
The unknown, unexplored world is shrouded in darkness in Civilization

Terrain and Exploration in Strategic Wargames

Strategic war games are another genre where physical geography matters. One weekend shortly after the pandemic lock-down began in 2020, I dug my old Nintendo out of the closet and replayed some of my old favorites. Desert Commander by Kemco was a particular favorite, and one of Nintendo’s only war strategy games. You command one of two opposing armies in the North African desert during World War II, and your objective is simple: eliminate the enemy’s headquarters unit, or their entire army. You have a mix of tanks, infantry, armored cars, artillery, anti-aircraft guns, supply trucks, fighters, and bombers at your command. Each unit varies in terms of range of movement and offensive and defensive strength, in total and relative to other units. Tanks are powerful attackers, but weak defenders against artillery and hopeless against bombers. Armored cars cruise quickly across the sands compared to slowly trudging infantry.

Terrain also influences movement, offense, and defense. You can speed along a road, but if you’re attacked by planes or enemy tanks you’ll be a sitting duck. Desert, grassland, wilds (mountains), and ocean make up the rest of the terrain, but scattered about are individual features like pillboxes and oases which provide extra defense. A novel aspect of the game was its reliance on supply: units run low on fuel and ammo, and after combat their numbers are depleted. You can supply fuel and ammo to ground units with trucks, but eventually these also run out of gas. Scattered about the map are towns, which are used for resupply and reinforcement. There are a few airfields scattered about, which perform the same functions for aircraft. Far from being a simple battle game, you have to constantly gauge your distance and access to these supply bases, and consider the terrain that you’re fighting on. The later scenarios leave you hopelessly outnumbered against the enemy, which makes the only winning strategy a defensive one where you position your headquarters and the bulk of your forces at the best strong point, while simultaneously sending out a smaller strike force to get the enemy HQ.

Desert Commander
Units and terrain in NES Desert Commander. Towns and airfields are used for resupply.

There have been countless iterations and updates on this type of game. One that I have in my Steam library is Unity of Command by 2×2 Games, which pits the German and Soviet armies in the campaigns around Stalingrad during World War II. Like most modern turn-based games, the grid structure (used in Desert Commander) has been replaced with a hex structure, reflecting greater adjacency between areas. Again, there are a mix of different units with different strengths and capabilities. The landscape on the Russian steppe is flat, so much of the terrain challenge lies in securing bridgeheads or flanking rivers when possible, as attacking across them is suicidal. The primary goal is to capture key objectives like towns and bridgeheads in a given period of turns. A unit’s attack and movement phase are not strictly separated, so you can attack with a unit, move out of the way, and move another in to attack again until you defeat a given enemy. This opens up a hole, allowing you to pour more units through a gap to capture territory and move towards the objectives. The supply concept is even more crucial in UOC; as units move beyond their base, which radiates from either a single point or from a roadway, they will eventually run out of supplies and will be unable to fight. By pushing through gaps in defense and outflanking the enemy, you can capture terrain that cuts off this supply, which is more effective than trying to attack and destroy everything.

Unity of Command
Unity of Command Stalingrad Campaign. Push units through gaps to capture objectives and cut off enemy supplies.

The most novel take on this type of game that I’ve seen is Radio General by Foolish Mortals. This WWII game is a mix of strategy and history lesson, as you command and learn about the Canadian army’s role in the war (it incorporates an extensive amount of real archival footage). As the general commanding the army, you can’t see the terrain, or even where any of the units are – including your own. You’re sitting behind the lines in a tent, looking at a topographic map and communicating with your army – by voice! – on the radio. You check in and confirm where they are, so you can issue orders (“Charlie company go to grid cell Echo 8”), and then slide their little unit icons on the map to their last reported position. They radio in updates, including the position of enemy units. The map doesn’t give you complete and absolute knowledge in this game; instead it’s a tool that you use to record and understand what’s going on. Another welcome addition is the importance of elevation, which aids or detracts in movement, attack, defense, and observation. A unit sitting on top of a hill can relay more information to you about battlefield circumstances compared to one hunkered down in a valley.

Radio General
In Radio General, the topo map is the battlefield. You rely on the radio to figure out where your units, and the enemy units, are.

Strategy Games with the Map as Focal Point

While terrain takes center stage in many games, in others all the action takes place on a map. Think of board games like Risk, where the map is the board and players capture set geographic areas like countries, which may be grouped into hierarchies (like continents) that yield more resources. Unlike the terrain-based games where the world is randomly generated, most map-based games are relatively fixed. Back to the Nintendo, the company Koei was a forerunner of historical strategy games on consoles, my favorite being Genghis Khan. The basic game view was the map, which displayed the “countries” of the world in the late 12th and early 13th centuries. Each country produced specialized resources based on its location, had military units unique to its culture, and produced gold, food, and resources based on its infrastructure. Your goal was to unite Mongolia and then conquer the world (of course). Once you captured other countries, they remained as distinct areas within your empire, and you would appoint governors to manage them. When invading, the view switched from an administrative map mode to a battlefield terrain mode, similar to ones discussed previously.

Genghis Khan
Genghis Khan on the original NES. The map is the focal point of the game.

Fast forward to now, and Paradox has become a leading developer of historical strategy games. Crusader Kings 2 is one of their titles that I have, where the goal is to rule a dynasty from the beginning to the end of the medieval period in the old world. Conquering the entire world is unlikely; you aim to rule some portion of it, with the intention of earning power and prestige for your dynasty through a variety of means, warlike and peaceful. These are complex games, which require diving into wikis and videos to understand all the medieval mechanics that you need to keep the dynasty going. Should you use gavelkind, primogeniture, seniority, or feudal elective succession? Choose wisely, otherwise your kingdom could fracture into pieces upon your demise, or worse your nefarious uncle could take the throne.

CK2 takes human geographical complexity to a new level with its intricate hierarchy of places. The fundamental administrative unit on the map is a county. Within the county you have sub-divisions, which in GIS-speak are like “points in polygons”: towns ruled by a non-noble mayor, parishes ruled by a bishop, and maybe a barony ruled by a noble baron. Ostensibly, these would be vassals to the count, while the count in turn is a vassal to a duke. Several counties form a duchy, which in turn make up a kingdom, and in some cases several kingdoms are part of empires (i.e. Holy Roman and Byzantine). In every instance, rulers at the top of the chain will hold titles to smaller areas. A king holds a title to the kingdom, plus one or more duchies, one or more counties (the king’s demesne), and maybe a barony or two. If he / she doesn’t hold these titles directly, they are granted to a vassal. A big part of the game is thwarting the power of vassals to lay claim to your titles, or if you are a vassal, getting claims to become the rightful heir. Tracking and shaping family relations and how they are tied to places is a key to success, more so than simply invading places.

Crusader Kings 2
Geographic hierarchy in Crusader Kings 2. Middlesex is a county with a town, barony, and parish. It’s one of four counties in the Duchy of Essex, in the Kingdom of England.

Which in CK2, is hard to do. Unlike other war games, you can’t invade whoever you want (unless they are members of a rival religion). The only way to go to war is if you have a legitimate claim to territory. You gain claims through marriage and inheritance, through your vassals and their claims, by fabricating claims, or by claiming an area that’s a dejure part of your territory, i.e. that is historically and culturally part of your lands. While the boundaries of the geographic units remain stable, their claims and dejure status change over time depending on how long they’re held, which makes for a map that’s dynamic. In another break from the norm, the map in CK2 performs all functions; it’s the main screen for game play, both administration and combat. You can modify the map to show terrain, political boundaries, and a variety of other themes.

Conclusion

I hope you enjoyed this little tour, which merely scratches the surface of the relation between geography and video games, based on a small selection of games I’ve played and enjoyed over the years. There’s a tight relationship between terrain and exploration, and how topography influences resource availability and development, the construction of buildings, movement, offense and defense. In some cases maps provide the larger context for tracking and explaining what happens at the terrain level, as well as navigating between different terrain spaces. In other cases the map is the central game space, and the terrain element is peripheral. Different strategies have been employed for equating the players knowledge with the map; the player can be all knowing and see the entire layout, or they must explore to reveal what lies beyond their immediate surroundings.

There are also a host of geographically-themed games that make little use of maps or terrain. For example, Mini Metro by Dinosaur Polo Club is a puzzle game where you connect constantly emerging stations to form train lines to move passengers, using a schematic resembling the London tube map. In this game, the connectivity between nodes in a network is what’s important, and you essentially create the map as you go. Or 3909 LLC’s Papers, Please, a dystopian 1980s “document simulator” where you are a border control guard in an authoritarian country in a time of revolution, checking the documentation of travelers against ever changing rules and regulations (do traveler’s from Kolechia need a work permit? Is Skal a city in Orbistan or is this passport a forgery…). Of course, we can’t end this discussion without mentioning Where in the World is Carmen Sandiego, Broderbund’s 1985 travel mystery that introduced geography and video games to many Gen Xers like myself. Without it, I may have never learned that perfume is the chief export of Comoros, or that Peru is slightly smaller than Alaska!

Where in the World is Carmen Sandiego? In hi-tech CGA resolution!
A-Train Classic

Neighborhood Research and the Census for Undergrads

Each semester I visit several undergraduate classes in public affairs and journalism, to introduce students to census data. They’re researching or reporting on particular issues and trends in neighborhoods in New York City, and they are looking for statistics to either support their work or generate ideas for a story. I usually showcase the NYC Population Factfinder as a starting point, mention the Census Reporter for areas outside the city , and provide background info on the decennial census, American Community Survey, and census geography and subjects. This year I included two new examples toward the beginning of the lecture to spark their interest.

I recently helped reporter Susannah Jacob navigate census data for an article she wrote on hyper-gentrification in the West Village for the New York Review of Books. A perfect example, as it’s what the students are expected to do for their assignment! Like any good journalist (and human geographer), Susannah pounded the pavement of the neighborhood, interviewing residents and small businesses and observing and documenting the urban landscape and how it was changing. But she also wanted to see what the data could tell her, and whether it would corroborate or refute what she was seeing and hearing.

NYRB Article on the West Village

Source: Jacob & Roye, New York Review of Books, Oct 2019. https://www.nybooks.com/daily/2019/10/09/what-happened-to-the-west-village/

We used the NYC Population Factfinder to assemble census tracts to approximate the neighborhood, and I did a little legwork to pull data from the County / ZIP Code Business Patterns so we could see how the business landscape was changing. The most surprising stat we discovered was that the number of 1-unit detached homes had doubled. This wouldn’t be odd in many rapidly growing places in the US, but it’s unusual for an old, built-out urban neighborhood. A 1-unit detached home is a free-standing single family structure that doesn’t share walls with other buildings. Most homes in Manhattan are either attached (row houses / town houses) or units in multi-unit buildings (apartments / condos / co-ops). How could this be? Uber-wealthy people are buying up adjoining row homes, knocking down the walls, and turning them into urban mansions. Seems extraordinary, but apparently is part of a trend.

We certainly ran up against the limitations of ACS data. The estimates for tracts have large margins of error, and when comparing two short time frames it’s difficult to detect actual change, as differences in estimates are clouded by sampling noise. Even after aggregating several tracts, many of the estimates for change weren’t reliable enough to report. When they were (as in the housing example) you could only say that there has been a relative increase without becoming wedded to a precise number. In this case, from 214 (+/- 127) detached units in 2006-2010 to 627 (+/-227) in 2013-2017, an increase of 386 (+/- 260). Not great estimates, but you can say it’s an increase as the low end for change is still positive at 126 units. Considering the time frame and character of the neighborhood, that’s still noteworthy (bearing in mind we’re working with a 90% confidence interval). In cases where the differences overlap and could represent either an increase or decrease there are few claims you can make, and it’s best to walk away (or look at larger area). I always discuss the margin of error with students and caution them about treating these numbers as counts.

While census data is invaluable for describing and studying individual places, it’s inherent geographic nature also allows us to study places in relation to each other, and to illustrate geographic patterns. For my second example, I zoom out and show them this map of racial-ethnic distribution in the United States:

Map of US Racial and Ethnic Diversity

Source: William H. Frey analysis of US Census population estimates, 2018. https://www.brookings.edu/research/americas-racial-diversity-in-six-maps/

This is one of a series of six maps by demographer William Frey at the Brookings Institute that highlights the geographic diversity of the United States. In this map, each county is shaded for a particular race / ethnicity if the population of that group in that county is greater than that group’s share of the national population. For example, Hispanics / Latinos represent 18.3% of the total US population, so counties where they represent more than this percentage are shaded.

For the purpose of the class, it helps make the census ‘pop’ and gets the students to think about the statistics as geospatial datasets that they can see and relate to, and that can form the basis for interesting research.

Some footnotes – if you like Frey’s maps, I highly recommend his book Diversity Explosion: How New Racial Demographics are Remaking America. It explores the evolving demographic and geographic landscape of the US with clear, accessible writing and more of these great maps (in color).

I used the pic at the top of this post as the background for my intro slide. It’s a screenshot of a city from A-Train, a 1992 city-building train simulator that was ported from Japan to the world by Artdink and Maxis, following the success of something called SimCity. It wasn’t nearly as successful, but I always liked the graphics which have now attained a retro-gaming vibe.

Factorio forest landscape

Exploring New Worlds in Factorio

The first draft is finished and I sent my book off for review earlier this month, and I’ve been back to work full-time for two months now. It’s been a difficult transition, so I thought I’d write a more lighthearted post this month about imaginary geographic worlds (as luck would have it, the Geo NYC Meetup group is discussing fictional mapping next week).

I’ve always enjoyed top-down simulation games; I still have my original copy of SimCity from 1989, in the box with the diskettes. More recently, I started playing a top-down, world-exploration, operations management, logistical simulator game called Factorio. The premise is you are the sole survivor of a team of scientists and engineers who have crash landed on an unexplored world. Using the scrap metal of your ship, a few simple tools, and the abundant resources on the planet, your goal is to build a rocket to launch a satellite into space to alert the crew of a successive spaceship of your presence. Scattered across the planet are concentrations of resources: water, trees (for wood), stone, iron ore, copper ore, oil, coal, and uranium. With an ax and a few scavenged plates from the ship, you begin by building a stone furnace for smelting metals. You use your ax to mine some stone to build the furnace, some iron for smelting, and some coal for fuel. Once you’ve smelted some metal you can construct a drill to mine the materials and insert them into the smelter automatically.

Smelting the ore converts it into refined material: stone to bricks, iron ore to iron plates, and copper ore to copper plates. Initially you can take these materials and manually craft them to make products: iron plates become iron gear wheels, copper plates become copper wire, which in turn can be crafted to create higher order parts like electronic circuits and finished machine products. Ultimately you’ll construct assembly plants that take the necessary materials and build the products for you, and the outputs can be used as inputs for other products.

Factorio mining drills

Mining ore

Factorio smelters

Smelting ore to plates

Factorio assemblers

Assembling products

 

 

 

 

 

 

The game becomes a logistical puzzle, where you mine ores from various deposits and move them to be smelted, and then move the refined materials to different assembly plants to create higher-order products. You transport everything using conveyor belts and inserters, which grab materials from belts and insert them into the smelters, assemblers, and other structures. You construct pumps, boilers, and steam engines powered by coal or wood to generate electricity to power the entire factory, and in order to keep developing higher-order goods you combine certain materials to produce “science”; little colorful beakers of liquid that you move on belts to laboratories to keep research humming.

As the game and your research progresses you develop technology that allows you to better explore the world and access additional resources, as you’ll eventually deplete the original deposits near the factory. You can develop solar and nuclear power as cleaner electricity alternatives, drill and refine oil to create fuels and plastics, build cars to explore the landscape, and construct railroads to transport more distant materials to your base. As your factory expands you have to grapple with the logistical hurdles of moving products created at disparate ends of the plant together in order to create new products, forcing you to either plan ahead or reconfigure your layout as time passes (or build some drones to fly the materials around). The clock is always ticking as the game is played in real time (it’s not turn-based).

Factorio factory

Main Factorio screen showing portion of a factory and map layout

At some point you face a new problem: you are not alone on this planet. There are some large, scary-looking insect creatures living there that don’t like all the pollution that’s coming from your factory, and they don’t particularly like you. Once they become irritated enough they attack and chew up your factory, and you along with it. Sadly there is no negotiating with them (they’re not sentient), so some of your attention and resources must be spent on weapons. You can take a purely defensive approach, building walls and gun turrets to protect your base as well as armor and shields to protect yourself. Or you can barrel out in a tank or use artillery to destroy them as they encroach on your operations. You can also develop cleaner, less polluting technologies to irritate them less.

An additional challenge is that the game keeps changing. Even though it’s been out for several years Factorio is still in a beta phase, but given it’s maturity and update cycle it’s super stable. The developers are part of a small company in the Czech Republic who focus primarily on this game. Factorio is available for purchase via their website and via Steam for all operating systems, and has been downloaded over a millions of times. The fanatical fan base appreciates the ability to mod practically every aspect of the game, and they form a community that’s crucial to the game’s development through testing and feedback. Factorio is definitely a member of a new generation of games where part of the challenge is learning how to play it. I’ve crawled through the extensive wiki, scoured Reddit for advice, and watched several YouTube series to figure out how it works.

Regardless of how many times you’ve played it, there is always something new to tinker with. Many players enjoy the engineering and mathematical side of the game. Their goal is to build the most efficient system, perfectly balance inputs and outputs, and create the best ratios for production. Others go for scale, building the largest possible factory with the most throughput. There are railroaders who enjoy building the trains, and warriors who focus on combat with the voracious bugs. Beyond building the rocket, the game has a number of challenges that players attempt to master, and it can be played solo or multiplayer for gamers who want to work together or simply explore each other’s layouts and solutions.

As a geographer, I enjoy the actual worlds themselves and the unique challenge each environment presents. While you can create blueprints and use the same design for a railroad station or solar power generator over and over again, you’re forced to change your overall factory layout based on the location of resources and configuration of the terrain. Prior to launching a new game, you specify the general size, frequency, and richness of resources, trees, water, and enemy bugs, and you can keep generating maps until you find one you like. While many of the efficiency aficionados want flat playing surfaces, I enjoy the complexity of fitting your factory in around the oceans and forests, and the challenge of exploring and shipping in materials from far flung places.

The world itself is quite beautiful. The developers provide extensive details about the development and inner-workings of the game, including the processes for generating logical and realistic looking landscapes. There are lush deciduous forests in vibrant autumn colors, desert wastelands strewn with rocks, and clusters of baobab-like trees on the dry plains. Even though they’re just bits and bytes I limit what I harvest, because I hate chopping them down. Unlike the real world, mining ore is much less destructive and the material is simply scraped off the surface, leaving unblemished soil behind. A finite portion of the world is visible on the map when you begin the game, and the surrounding area is cloaked in darkness. You can reveal more of the terrain by building radar stations at your base, and can explore on foot or go further afield once you’ve constructed vehicles. The world has no end, and stretches into infinity.

Factorio forest landscape

Factorio has sparked my curiosity in unexpected ways. As I’m mining ores and moving them into smelters to produce metals, I started to wonder: what is smelting anyway? How do you actually extract metals from rocks? My exposure to chemistry was limited to my junior year of high school where I struggled with balancing formulas and memorizing the periodic table. Fortunately I discovered some fascinating books and videos that made the subject engaging. Material scientist Mark Miodownik’s Stuff Matters: Exploring the Marvelous Materials That Shape Our Man-Made World, is an accessible, informative, and often hilarious exploration of the materials we use everyday. You’ll learn the basic chemistry behind paper, iron, ceramics, even chocolate! Periodic Tales: A Cultural History of the Elements, from Arsenic to Zinc by Hugh Aldersey-Williams is perfect if you want to learn some basics about chemistry and material science from a historical science perspective. NOVA aired a solid three-part series a few years back called Treasures of the Earth that revealed the secrets behind gems, metals, and power sources.

I resisted the temptation to play for the year I was on sabbatical, as it’s too easy to get sucked into it. A few hours here and there throughout a month, and by the time I launch that rocket into space 30 hours have gone by! Initially I feel a bit guilty, sinking so much time into a game. But when you consider how much time the average person spends watching TV or looking at stupid stuff on their phone (4 hours and 2.5 hours respectively, EVERY DAY!), enjoying the occasional game that challenges your mind and sparks your imagination is a good alternative. Similar to the Minecraft phenomena, I think it has great potential as an educational tool for learning about logistics, planning, geology and materials science, and engineering. And for the geographers out there, there are infinite worlds to explore.

Factorio desert landscape