gis

Anything about GIS software

Brown University on OpenTopoMap

A New Year and a New Start

I have some news! After 13 1/2 years, January 31, 2021 will be my last day as the Geospatial Data Librarian at Baruch College, City University of New York (CUNY). On February 1, 2021, I will be the new GIS and Data Librarian at Brown University in Providence, Rhode Island!

It’s an exciting opportunity that I’m looking forward to. I will be building geospatial information and data services in the library from the ground up, in concert with many new colleagues. I will be working closely with the Population Studies Training Center (PSTC) and the Spatial Structures in Social Sciences (S4) as well as the Center for Digital Scholarship within the library. Several aspects of the position will be similar, as I will continue to provide research and consultation services, create research guides and tutorials, teach workshops, collect and create datasets, and eventually build and manage a data repository and small lab where we’ll provide services and peer mentor students.

The resources I’ve created at Baruch CUNY will remain accessible, and eventually a new person will take the reins. I have moved the latest materials for the GIS Practicum, my introductory QGIS tutorial and workshop, to this website and I hope to continue updating and maintaining this resource. There are a lot of people throughout CUNY that I’m going to miss, at: the Newman Library, the CUNY Institute for Demographic Research, the Weissman Center for International Business, the Marxe School, Baruch’s Journalism Department, the Geography Department at Lehman College, the Digital Humanities program and the CUNY Mapping Service at the CUNY Graduate Center, and many others.

I will continue writing posts and sharing tips and resources here based on my new adventures at Brown, but may need a little break as I transition… stay tuned!

Best – Frank

Stamen Watercolor Map Tiles

Adding Basemaps to QGIS With Web Mapping Services

For this final post of 2020, I was looking back through recent projects for something interesting yet brief; I’ve been writing some encyclopedia-length posts lately and wanted to keep this one on the lighter side. In that vein, I’ve decided to share a short list of free web mapping services that I use as basemaps in QGIS (they’ll work in ArcGIS too). This has been on my mind as I’ve recently stumbled upon the OpenTopoMap, which is an alternate stylized version of the OpenStreetMap that looks pretty sharp.

See this earlier post for details, but in short, to connect to these services in QGIS:

QGIS Browser Panel
  1. Select the appropriate web map service type in the browser panel (usually WMS / WMTS or XYZ Tiles), right click, and add new connection.
  2. Give it a meaningful name, paste the appropriate URL into the URL box, click OK.
  3. In the browser panel drill down to see the service, and for WMS / WMTS layers you can drill down further to see specific layers you can add.
  4. Select the layer and drag it into the window, or select, right click, and add the layer to the project.
  5. If the resolution looks off, right click on a blank area of the toolbar and check the Tile Scale Panel. Use this to adjust the zoom for the web map. If the scale bar is greyed out you’ll need to set the map window to the same CRS as the map service: select the layer in the panel, right click, and choose set CRS – set project CRS from layer.
  6. Some web layers may render slowly if you’re zoomed out to the full extent, or even not at all if they contain many features or are super detailed. Conversely, some layers may not render if you’re zoomed too far in, as tiles may not be available at that resolution. Experiment!

If you’re an ArcGIS user see these concise instructions for adding various tile layers. This isn’t something that I’ve ever done, as ArcGIS already has a number of accessible basemaps that you can add.

In the list below, links for the service name take you to either the website version of the service, or to a list of additional layers that you can connect to. The URLs that follow are the actual connections to the service that you’ll use within your GIS package. If you use OSM, OTP, or Stamen in your maps, make sure to cite them (they use Creative Commons Licenses – follow links to their websites for details). The government sources are public domain, but you should still cite them anyway. Happy mapping, and happy holidays!

OpenStreetMap XYZ Tile (global)

http://tile.openstreetmap.org/{z}/{x}/{y}.png

OpenTopoMap XYZ Tile (global)

https://tile.opentopomap.org/{z}/{x}/{y}.png

Stamen XYZ Tile (global) see their website for examples; the image topping this post is from watercolor

http://tile.stamen.com/terrain/{z}/{x}/{y}.png
http://tile.stamen.com/toner/{z}/{x}/{y}.png
http://tile.stamen.com/watercolor/{z}/{x}/{y}.jpg

USGS National Map WMTS (global, but fine detail is US only)

Imagery:
https://basemap.nationalmap.gov/arcgis/rest/services/USGSImageryOnly/MapServer/WMTS/1.0.0/WMTSCapabilities.xml

Imagery & Topo:
https://basemap.nationalmap.gov/arcgis/rest/services/USGSImageryTopo/MapServer/WMTS/1.0.0/WMTSCapabilities.xml

Shaded Relief: 
https://basemap.nationalmap.gov/arcgis/rest/services/USGSShadedReliefOnly/MapServer/WMTS/1.0.0/WMTSCapabilities.xml

Topographic:
https://basemap.nationalmap.gov/arcgis/rest/services/USGSTopo/MapServer/WMTS/1.0.0/WMTSCapabilities.xml

US Census Bureau TIGERweb WMS (US only) see their website for older vintages

Current TIGER features:
https://tigerweb.geo.census.gov/arcgis/services/TIGERweb/tigerWMS_Current/MapServer/WMSServer 

Current physical features:
https://tigerweb.geo.census.gov/arcgis/services/TIGERweb/tigerWMS_PhysicalFeatures/MapServer/WMSServer

CEC North America LULC

Dataset Roundup: A Summary of Specialized Open Data Sources

I list the top free GIS data sources that I consistently use on my Resources page; these are general, foundational sources that can be used for many applications. In this post I’m going to summarize an eclectic mix of more specialized resources that I’ve used or that have been recommended to me over this past year. I’ve categorized these into GIS datasets, sub-national population data for countries (tabular data that can be joined to GIS vector layers), and historic socio-economic data for countries.

Geospatial Data

North American Land Change Monitoring System

Published by the Commission for Environmental Cooperation, these land use and land cover rasters (see photo at the top of this post) are derived from MODIS imagery at 250 meter resolution for earlier years and either Landsat-7 or RapidEye imagery at 30 meter resolution for later years for Canada, the United States, and Mexico in 2005, 2010, and 2015. There are layers for both land cover and land cover change over a 5-year period. Land cover is classified into 19 categories based on UN FAO standards. It’s easy to download as the layer is unified (no individual tiles to mess with and stitch together) and for the 2015 series you can choose a national file or one for the entire continent.

PRISM Climate Data

Published by the Northwest Alliance for Computational Science & Engineering at Oregon State University, the PRISM Climate Group publishes climate data for the United States. You can generate daily, monthly, or 30-year normal rasters for temperature (min, max, mean), precipitation, dew point, and a few other measures for the continental US. There are also some prepackaged files that were created for special projects that cover Alaska, Hawaii, and some of the US territories. The site is very easy to use (certainly compared to other sites that provide climate data) and beyond its research applications the data is good for teaching purposes, as files are straightforward to create, download, and interpret.

PRISM Mean Temp Map Oct 2020

Marineregions.org Marine Boundaries

I usually help people find vector boundaries for terrestrial features, and the oceans are an afterthought that appear as the absence of land. But what if you specifically needed features that represent oceans and seas? Marineregions.org, maintained by the Flanders Marine Institute, provides many sets of water-based boundaries that include maritime regions (legal sea zones around countries) as well as polygons that represent the boundaries of the oceans and largest seas (IHO Sea Areas, defined by the International Hydrographic Association). See the screenshot of this layer in QGIS below.

IHO Seas Layer in QGIS

GNSS Time Series

Produced by NASA JPL, this dataset can be used for measuring vertical land movement (VLM) and subsistence, primarily due to movement of the earth’s tectonic plates. The dataset contains over 2,000 GPS observation points or stations; the majority are in the US but there are a scattering of points throughout the world. The data file for geodetic positions and velocities contains two records for every station: the POS (position) record provides data for the latitude (N), longitude (E), and elevation (V) in mm. The VEL (velocity) indicates the rate of movement over the time period by direction (N / E) and elevation. The last three columns for both sets of records are margins of error for each value. The data file is in a fixed-width text format. To use it in GIS you need to parse the data into a tabular format and drop the header information. When plotting the coordinates, the CRS for the geodetic file is IGS14 (EPSG code 9019). If your CRS library doesn’t include this system, it is roughly equivalent to ITRF2014 (EPSG code 7789).

Subnational Population Data

IPUMS Terra

Are you looking for population or socio-economic data for the first-level administrative divisions (states, provinces, departments, districts, etc) for many different countries? IPUMS Terra is part of the IPUMS series at the Minnesota Population Center, Univ of Minnesota. The data has been gathered from census and statistical agencies of individual countries, or in some cases from estimates generated by the project. Choose the "Create Your Custom Dataset" option, then on the next screen choose "Start Extract Area Level Output". On the Extract Builder (see pic below) choose variables on the left, like Demographic and Total Population. Then under Datasets on the right you can choose countries and filter by year. Once you move on to the next screen, you can choose to harmonize the output or choose specific years, and choose your administrative level: national, ADM-1, or smallest available. You must register to use the IPUMS data series, but registration is free for educational and non-commercial use (as long as you cite IPUMS as the source).

IPUMS Terra Interface

Subnational Human Development Index

An alternative for first-level admin data is the Subnational Human Development Index published by the GlobalDataLab at the Institute for Management Research at Radboud University. There are far fewer variables and less customization compared to IPUMS Terra, but as such the site is smaller and easier to use. There are several different indices for measuring human development, but you can also access the following indicators: life expectancy, GNI per capita, expected and mean years of schooling, and population size in millions.

Historic Global Population and Economic Data

Maddison Project

Yes, that’s Maddison with two "ds". This project from the Groningen Growth and Development Centre at the University of Groningen generates comparative economic growth, income, and population data for countries over a long historical time span; back to the year AD 1 in a few cases, but for the most part from AD 1500 forward. They provide detailed documentation that explains how the dataset was created, and it’s easy to download in either an Excel or STATA format.

The World Countries Urban Population

This dataset consists of two spreadsheet files – one for the total urban population and another for the urban ratio of the population for countries going back to the year 1500. The dataset was created by Jonathan Fink-Jensen at Utrecht University and is held in the International Institute of Social History’s data repository. The repository contains a variety of other historic socio-economic datasets for many different countries.

USPS mailbox

The Trouble with ZIP Codes: Solutions for Data Analysis and Mapping

Since the COVID-19 pandemic began, I’ve received several questions about finding census data and boundary files for ZIP Codes (aka US postal codes), as many states are publishing ZIP Code-level data for cases and deaths. ZIP Codes are commonly used for summarizing address data, as it’s easy to do and most Americans are familiar with them. However, there are a number of challenges associated with using ZIP Codes as a unit of analysis that most people are unaware of (until they start using them). In this post I’ll summarize these challenges and provide some solutions.

The short story is: you can get boundary files and census data from the decennial census and 5-year American Community Survey (ACS) for ZIP Code Tabulation Areas (ZCTAs, pronounced zicktas) which are approximations of ZIP Codes that have delivery areas. Use any census data provider to get ZCTA data: data.census.gov, Census Reporter, Missouri Census Data Center, NHGIS, or proprietary library databases like PolicyMap or the Social Explorer. The longer story: if you’re trying to associate ZIP Code-level data with census ZCTA boundary files or demographic data, there are caveats. I’ll cover the following issues in detail:

  1. ZIP Codes are actually not areas with defined boundaries, and there are no official USPS ZIP Code maps. Areas must be derived using address files. The Census Bureau has done this in creating ZIP Code Tabulation Areas (ZCTAs).
  2. The Census Bureau publishes population data by ZCTA and boundary files for them. But ZCTAs are not strictly analogous with ZIP Codes; there isn’t a ZCTA for every ZIP Code, and if you try to associate ZIP data with them some of your records won’t match. You need to crosswalk your ZIP Code data to the ZCTA-level to prevent this.
  3. ZCTAs do not nest or fit within any other census geographies, and the postal city name associated with a ZIP Code does not correlate with actual legal or municipal areas. This can make selecting and downloading ZIP Code data for a given area difficult.
  4. ZIP Codes were designed for delivering mail, not for studying populations. They vary tremendously in size, shape, and population.
  5. Analyzing data at either the ZIP Code or ZCTA level over time is difficult to impossible.
  6. ZIP Code and ZCTA numbers must be saved as text in data files, and not as numbers. Otherwise codes that have leading zeros get truncated, and the code becomes incorrect.

ZIP Codes versus ZCTAs and Boundaries

Contrary to popular belief, ZIP Codes are not areas and the US Postal Service does not delineate boundaries for them. They are simply numbers assigned to ranges of addresses along street segments, and the codes are associated with a specific post office. When we see ZIP Code boundaries (on Google Maps for example), these have been derived by creating areas where most addresses share the same ZIP Code.

The US Census Bureau creates areal approximations for ZIP Codes called ZIP Code Tabulation Areas or ZCTAs. The Bureau assigns census blocks to a ZIP number based on the ZIP that’s used by a majority of the addresses within each block, and aggregates blocks that share the same ZIP to form a ZCTA. After this initial assignment, they make some modifications to aggregate or eliminate orphaned blocks that share the same ZIP number but are not contiguous. ZCTAs are delineated once every ten years in conjunction with the decennial census, and data from the decennial census and the 5-year American Community Survey (ACS) are published at the ZCTA-level. You can download ZCTA boundaries from the TIGER / Line Shapefiles page, and there is also a generalized cartographic boundary file for them.

Crosswalking ZIP Code Data to ZCTAs

There isn’t a ZCTA for every ZIP Code. Some ZIP Codes represent large clusters of Post Office boxes or are assigned to large organizations that process lots of mail. As census blocks are aggregated into ZCTAs based on the predominate ZIP Code for addresses within the block, these non-areal ZIPs fall out of the equation and we’re left with ZCTAs that approximate ZIP Codes for delivery areas.

As a result, if you’re trying to match either your own summarized address data or sources that use ZIP Codes as the summary level (such as the Census Bureau’s Business Patterns and Economic Census datasets), some ZIP Codes will not have a matching ZCTA and will fall out of your dataset.

To prevent this from happening, you can aggregate your ZIP Code data to ZCTAs prior to joining it to boundary files or other datasets. The UDS Mapper project publishes a ZIP Code to ZCTA Crosswalk file that lists every ZIP Code and the ZCTA it is associated with. For the ZIP Codes that don’t have a corresponding area (the PO Box clusters and large organizations), these essentially represent points that fall within ZCTA polygons. Join your ZIP-level data to the ZIP Code ID in the crosswalk file, and then group or summarize the data using the ZCTA number in the crosswalk. Then you can match this ZCTA-summarized data to boundaries or census demographic data at the ZCTA-level.

ZIP Code to ZCTA Crosswalk

UDS ZIP Code to ZCTA Crosswalk. ZIP Code 99501 is an areal ZIP Code with a corresponding ZCTA number, 99501. ZIP Code 99520 is a post office or large volume customer that falls inside ZCTA 99501, and thus is assigned to that ZCTA.

Identifying ZIPs and ZCTAs within Other Areas

ZCTAs are built from census blocks and nest within the United States; they do not fit within any other geographies like cities and towns, counties, or even states. The boundaries of a ZCTA will often cross these other boundaries, so for example a ZCTA may fall within two or three different counties. This makes it challenging to select and download census data for all ZCTAs in a given area.

You can get lists of ZIP Codes for places, for example by using the MCDC’s ZIP Code Lookup. The problem is, the postal city that appears in addresses and is affiliated with a ZIP Code does not correspond with cities as actual legal entities, so you can’t count on the name to select all ZIPs within a specific place. For example, my hometown of Claymont, Delaware has its own ZIP Code, even though Claymont is not an incorporated city with formal, legal boundaries. Most of the ZIP Codes around Claymont are affiliated with Wilmington as a place, even though they largely cover suburbs outside the City of Wilmington; the four ZIP Codes that do cover the city cross the city boundary and include outside areas. In short, if you select all the ZIP Codes that have Wilmington, DE as their place name, they actually cover an area that’s much larger than the City of Wilmington. The Census Bureau does not associate ZCTAs with place names.

ZCTAs and Places in northern Delaware

Lack of correspondence between postal city names and actual city boundaries. Most ZCTAs with the prefix 198 are assigned to Wilmington as a place name, even though many are partially or fully outside the city.

So how can you determine which ZIP Codes fall within a certain area? Or how they do (or don’t) intersect with other areas? You can overlay and eyeball the areas in TIGERweb to get a quick idea. For something more detailed, here are three options:

  1. The Missouri Census Data Center’s Geocorr application lets you calculate overlap between a source geography and a target geography using either total population or land area for any census geographies. So in a given state, if you select ZCTAs as a source, and counties as the target, you’ll get a list that displays every ZCTA that falls wholly or partially within each county. An allocation factor indicates the percentage of the ZCTA (population or land) that’s inside and outside a county, and you can make decisions as to whether to include a given ZCTA in your study area or not. If a ZCTA falls wholly inside one county, there will be only one record with an allocation factor of 1. If it intersects more than one county, there will be a record with an allocation factor for each county.
  2. The US Department of Housing and Urban Development (HUD) publishes a series of ZIP Code crosswalk files that associates ZIP Codes with census tracts, counties, CBSAs (metropolitan areas), and congressional districts. They create these files by geocoding all addresses and calculating the ratio of residential, business, and other addresses that fall within each of these areas and that share the same ZIP Code. The files are updated quarterly. You can use them to select, assign, or apportion ZIP Codes to a given area. There’s a journal article that describes this resource in detail.
  3. Some websites allow you to select all ZCTAs that fall within a given geography when downloading data, essentially by selecting all ZCTAs that are fully or partially within the area. The Census Reporter allows you to do this: search for a profile for an area, click on a table of interest, and then subdivide the areas by smaller areas. You can even look at a map to see what’s been selected. data.census.gov currently does not provide this option; you have to select ZCTAs one by one (or if you’re using the census API, you’ll need to create a list of ZCTAs to retrieve).

MCDC Geocorr

Sample output from MCDC Geocorr. ZCTAs 08251 and 08260 fall completely within Cape May County, NJ. ZCTA 08270’s population is split between Cape May (92.4%) and Atlantic (7.6%) counties. The ZCTA names are actually postal place names; these ZCTAs cover areas that are larger than these places.

Do You Really Need to Use ZIP Codes?

ZIP Codes were an excellent mid-20th century solution for efficiently processing and delivering mail that continues to be useful for that purpose. They are less ideal for studying populations or other forms of human activity. They vary tremendously in size, shape, and population which makes them inconsistent as a unit of analysis. They have no legal or administrative meaning or function, other than delivering mail. While all American’s are familiar with them, they do not have any relevant social meaning. They don’t represent neighborhoods, and when you ask someone where they’re from, they won’t say “19703”.

So what are your other options?

  1. If you don’t have to use ZIP Code or ZCTA data for your project, don’t. For the United States as a whole, consider using counties, PUMAs, or metropolitan areas. Within states: counties, PUMAs, and county subdivisions. For smaller areas: municipalities, census tracts, or aggregates of census tracts.
  2. If you have the raw, address-based data, consider geocoding it. Once you geocode an address, you can use GIS to assign it to any type of geography that you have a boundary file for (spatial join), and then you can aggregate it to that geography. Some geocoders even provide geographies like counties or tracts in the match result. If your data is sensitive, strip all the attributes out except for the address and a serial integer to use as an ID, and after geocoding you can associate the results back to your original data using that ID. The Census Geocoder is free, requires no log in, allows you to do batches of 1,000 addresses at a time, and forces you to use these safety precautions. For bigger jobs, there’s an API.
  3. Sometimes you’ll have no choice and must use ZIP Code / ZCTA data, if what you’re interested in studying is only provided in that summary form, or if there are privacy concerns around geocoding the raw address data. You may want to modify the ZCTA geography for your area to aggregate smaller ZCTAs into larger ones surrounding them, for both visual display and statistical analysis. For example, in New York City there are several ZCTAs that cover only one city and census block, as they’re occupied by one large office building that processes a lot of mail (and thus have their own ZIP number). Also, unlike most census geographies, ZCTAs have large holes in them. Any area that does not have streets and thus no addresses isn’t included in a ZCTA. In urban areas, this means large parks and cemeteries. In rural areas, vast tracts of unpopulated forest, desert, or mountain terrain. And large bodies of water in every place.

Midtown ZCTAs

One-block ZCTAs in Midtown Manhattan, NYC that have either low or zero population.

Analyzing ZIP Code Data Over Time…

In short – forget it. The Census Bureau introduced ZCTAs in the year 2000, and in 2010 they modified their process for creating them. For a variety of reasons, they’re not strictly compatible. ACS data for ZCTAs wasn’t published until 2013. Even the economic datasets don’t go that far back; the ZIP Code Business Patterns didn’t appear until the early 1990s. Use areas that have more longevity and are relatively stable: counties, census tracts.

Why Do my ZIP Codes Look Wrong in Excel?

Regardless of whether you’re using a spreadsheet, database, or scripting language, always make sure to define ZIP / ZCTA columns as strings or text, and not as numeric types. ZIP Codes and ZCTAs begin with zeros in several states. Columns that contain ZIP / ZCTA codes must be saved as text to preserve the 5-digit code. If they’re saved as numbers, the leading zeros are dropped and the numbers are rendered incorrectly. This often happens if you’re working with data in a CSV file and you click on it to open it in Excel. In parsing the CSV, Excel assumes the ZIP / ZCTA field is a number and saves it as a number, which drops the zero and truncates the code. To prevent this from happening: open Excel to a blank project, go to the Data ribbon, click the button to import text data, choose delimited text on the import screen, choose the delimiter (comma or tab, etc), and when prompted you can select the ZIP / ZCTA column and designate it as text so that it imports properly.

Importing text files in Excel

To import CSV files in Excel, go to the Data ribbon and under Get External Data select From Text.

Conclusion

That’s all you ever (or maybe never) wanted to know about ZIP Codes and ZCTAs! For more information see the Census Bureau’s page about ZCTAs, a thorough write up by the Missouri Census Data Center, and these informative and fun blog posts from PolicyMap (complete with photos of Mr. ZIP). I wrote an article a few years back that demonstrates how to use some of these resources (the UDS mapper file, Geocorr) to process ZIP data with SQL and python. And of course, check out my book, Exploring the U.S. Census: Your Guide to America’s Data, to explore these concepts and resources in greater detail with hands-on exercises.

QGIS 3.10 Screenshot

QGIS 3.10 Tutorial Workbook

I just posted an updated version of my QGIS tutorial / workbook manual, Introduction to GIS Using Open Source Software. This version was written for QGIS 3.10 A Coruña, which recently superseded QGIS 3.4 Madeira as the current Long Term Release (LTR). The LTR is intended to be more stable than the current releases and is supported for at least a year.

The workbook was designed to accompany a day-long introductory workshop that I teach and is divided into five chapters. Chapter 1 is a broad and concise overview of GIS, chapters 2 to 4 are hands-on exercises that cover: the basics of using the interface and the difference between vectors and rasters (chapter 2), a site selection analysis that demonstrates geoprocessing, spatial selection, table joins, coordinate plotting, expressions, and spatial analysis (chapter 3), and a thematic mapping example that illustrates coordinate reference systems (CRS), data classification, and mapping (chapter 4). Chapter 5 summarizes data sources and resources for learning more about GIS. In chapters 2 to 4 the steps for doing the exercises are kept concise with many screenshots, while detailed commentary explaining how everything works follows.

The manual and tutorial data are freely available for personal and classroom use under a Creative Commons license. I’m providing the material for both 3.10 A Coruna and 3.4 Madeira for now, but will take down the latter at the end of the spring semester (late May 2020).

The changes between 3.4 and 3.10 are not dramatic as far as the basic tools and principles that I cover in the book go, but I thought an update was worthwhile as there are just enough changes that could trip up new users (see the 3.10 visual change log for a full list of software updates).  In addition to incorporating changes to the interface, I also took the opportunity to tighten up and condense the material. In particular, I consolidated the coordinate reference system (CRS) exercises in chapter 4 from two sections to one, because in practice I found that it was overkill for a one-day session.

Here are a few noteworthy changes to the tutorial and software that impact novice users:

  1. The default setting for the toolbar buttons is rather small, so during the setup phase in chapter 2 I inserted an optional step to make them bigger. Go to: Settings > Options > General tab, and under the Application section change the icon size from 16 to 24.
  2. In 3.10, when new files are generated from geoprocessing operations and added to your project, the layers appear in the layers panel with the name you give them. In 3.4 they were assigned generic aliases like “Clipped” and “Buffer” based on the process you ran.
  3. In 3.10 the “Quantiles” classification scheme has been replaced with “Equal Counts”. Same scheme, different terminology.
  4. There’s now a dedicated north arrow button in the map layout screen. In 3.4 and earlier versions you added an arrow by selecting the add image button.
  5. In 3.10, every time you add a layer with a CRS that doesn’t match the existing CRS of the window, you’re presented with a datum transformation screen to modify the file you’re adding. This is a helpful warning if you already have existing layers in your project that match the window and your new file doesn’t, but it’s annoying when you’re trying to add files to a blank window in a new project. You can turn this feature off under: Options > Settings > CRS tab, under Default Datum Transformations uncheck the box for Ask for datum transformation.

It’s hard to believe that this is the 10th edition I’ve published in the past ten years. QGIS has certainly come a long way during that time. For a trip down memory lane, look at the 1st edition I wrote for QGIS 1.5 Tethys in 2011! Back then I wrote the whole thing in HTML… thankfully I “discovered” LaTeX a year later, and have used it for writing tutorials ever since.

If you wanted to learn GIS in general and QGIS in particular, spend a day with the manual and work through the exercises and you’ll have a good foundation. All the basics are there, as well as best practices and the “gotchas” that tend to trip people up.