FRED Chart - Pesronal Savings Rate

Finding Economic Data with FRED

I attended ALA’s annual conference in DC last month, where I met FRED. Not a person, but a database. I can’t believe I hadn’t met FRED before – it is an amazingly valuable resource for national, time-series economic data.

FRED was created by the Economic Research unit of the Federal Reserve Bank of St. Louis. It was designed to aggregate economic data from many government sources into a centralized database, with straightforward interface for creating charts and tables. At present, it contains 567,000 US and international time series datasets from 87 sources.

Categories of data include banking and finance (interest and exchange rates, lending, monetary data), labor markets (basic demographics, employment and unemployment, job openings, taxes, real estate), national accounts (national income, debt, trade), production and business (business cycles, production, retail trade, sector-level information about industries),  prices (commodities, consumer price indexes) and a lot more. Sources include the Federal Reserve, the Bureau of Labor Statistics, the Census Bureau, the Bureau of Economic Analysis, the Treasury Department, and a mix of other government and corporate sources from the US and around the world.

On their home page at https://fred.stlouisfed.org/ you can search for indicators or choose one of several options for browsing. The default dashboard shows you some of the most popular series and newest releases at a glance. Click on Civilian Unemployment Rate, and you retrieve a chart with monthly stats that stretch from the late 1940s to the present. Most of FRED’s plots highlight periods of recession since these have a clear impact on economic trends. You can modify the chart’s date range, change the frequency (monthly, quarterly, annually – varies by indicator), download the chart or the underlying data in a number of formats, and share a link to it. There are also a number of advanced customization features, such as adding other series to the chart. Directly below the chart are notes that provide a clear definition of the indicator and its source (in this case, the Bureau of Labor Statistics) and links to related tables and resources.

FRED - Chart of Civilian Unemployment Rate

The unemployment rate is certainly something that you’d expect to see, but once you browse around a bit you’ll be surprised by the mix of statistics and the level of detail. I happened to stumble across a monthly Condo Price Index for the New York City Metro Area.

Relative to other sources or portals, FRED is great for viewing and retrieving national (US and other countries) economic and fiscal data and charts gathered from many sources. It’s well suited for time-series data; there are lots of indexes and you can opt for seasonally adjusted or unadjusted values. Many of the series include data for large regions of the US, states, metro areas, and counties. The simplest way to find sub-national data is to do a search, and once you do you can apply filters for concepts, frequencies, geographies, and sources. FRED is not the place to go if you need data for small geographies below the county level. If you opt to create a FRED account (purely optional) you’ll be able to save and track indicators that you’re interested in and build your own dashboards.

If you’re interested in maps, visit FRED’s brother GeoFRED at https://geofred.stlouisfed.org/.  The homepage has a series of sample thematic maps for US counties and states and globally for countries. Choose any map, and once it opens you can change the geography and indicator to something else. You can modify the frequency, units, and time periods for many of the indicators, and you have basic options for customizing the map (colors, labels, legend, etc.) The maps are interactive, so you can zoom in and out and click on a place to see its data value. Most of the county-level data comes from the Census Bureau, but as you move up to states or metro areas the number of indicators and sources increase. For example, the map below shows individual income taxes collected per capita by state in 2018.

GeoFRED - State Income Tax

There’s a basic search function for finding specific indicators. Just like the charts, maps can be downloaded as static images, shared and embedded in websites, and you can download the data behind the map (it’s simpler to download the same indicator for multiple geographies using GeoFRED compared to FRED).

Take a few minutes and check it out. For insights and analyses of data published via FRED, visit FRED’s blog at https://fredblog.stlouisfed.org/.

datacensusgov

Navigating the New data.census.gov

June 2019 is the final month that the Census Bureau will post new data in the American Factfinder (AFF). From this point forward, all new datasets will be published via the new data dissemination platform data.census.gov. The second chapter of my book (now available for pre-order!) is devoted to navigating this new interface. In this post I’ll provide a preview / brief tutorial of the advanced search functions.

The new interface is search-driven, so you can type the names of topics and geographies or table ID numbers to find and explore data tables. There are spiffy data profiles for several geographies, and you have the ability to make basic thematic maps. The search interface makes it much easier to casually browse and discover data, so go ahead and explore.

I’d still recommend having a search strategy to find precisely what you need. Keyword searching alone isn’t going to cut it, because you’re searching across tens of thousands of tables in dozens of datasets. The good news is that the same strategy I’ve used for the AFF can be applied to data.census.gov: use the advanced search to filter by survey, year, geography, and topic to narrow down the list of possible tables to a manageable number, and then search or browse through those results to find what you need.

Let’s say we want to download the most recent data on home values for all the counties in Pennsylvania (or a state of your choosing). On data.census.gov click on the advanced search link under the search box. On the advanced search page scroll to the bottom to the filters. We’ll address them one by one:

Surveys. These represent all the different census datasets. Select ACS 5-Year Estimates Detailed Tables. Detailed socio-economic characteristics of the population are primarily published in the ACS. The 1-Year estimates are published for all geographies that have at least 65k people. Since most states have rural counties that have less than this threshold, we’ll have to use the 5-year estimates to get all the counties. The detailed tables are narrow, focusing on estimates for a single variable. The other options include profiles (lots of different data for one place) and subject tables (narrower in scope than profiles, but broader than the detailed tables).

filter by survey

Years. At the moment 2017 is the latest year for the ACS, so let’s select that. This quickly eliminates a lot of tables that we’re not interested in.

Geography. Choose 050 – County, then scroll down and choose Pennsylvania in the County (State) list, then All counties in Pennsylvania in the final list.

filter by geography

Topics. For this example choose Housing, then Financial Characteristics, then Housing Value and Purchase Price. Of all the filter options, this one is the most opened-ended and may require some experimentation based on what you’re looking for.

filter by topic

Codes. We don’t need to filter by codes in this example, but if we were searching for labor or business-related data we’d use this filter to limit results to specific sectors or industries by NAICS codes.

Underneath the filter menu, click the View All Results button. This brings us to the first results page, which provides a list of tables, maps, and pages related to our search. Click the button to View All Tables under the tables section.

This brings us to the table results page; the list of tables is displayed on the left, and the currently selected table is displayed on the right; in this case Value of owner-occupied housing units is shown, with counts of units by value brackets. At this stage, we can scroll through the list and browse to find tables with data that we’re interested in. We can also access the filters at the top of the list, if we want to modify our search parameters.

table results

A little further down the results list is a table for Median Value. Selecting that table will preview it on the right. Hit the Customize Table button. This opens the table in its own dedicated view. Hit the blue drop down arrow to the right of the table name, and you can modify the geography, year, or time-period on the left. On the right is a Download option. Hit download and you’ll be prompted to download a CSV file. In the download you’ll get three text files that contain metadata, the data, and descriptive information about the download. Click Download and you can save it.

customize table

Back on the customize table page, you can navigate back to the table results by clicking on “Tables” in the breadcrumb links that appear in the top left-hand corner. Then you can browse and choose additional tables.

That’s it! Not bad, right? Well, there are always caveats. At the moment, the biggest one is that you can’t easily download most geographies that are contained within other geographies. With one click we can filter to select all counties within a state, or all states within the nation. But if we wanted all census tracts in a county or all county subdivisions in a state, there aren’t any “All geographies in…” options for these geographies. We’d have to select each and every tract within a county, one at a time…

While data.census.gov is now relatively stable, it’s still under development and additional features like this should (hopefully) be implemented as time passes between now and the 2020 census. This is one reason why the American Factfinder will survive for another year, as we’ll still need to lean on it to accomplish certain tasks. Of course, there are other options within the Census Bureau (the API, the FTP site) and without (NHGIS, MCDC, Census Reporter) for accessing data.

The new platform currently provides access to several datasets from the present back to the year 2010: the decennial census, the ACS, population estimates, and several of the business datasets. The first new datasets that will be published in data.census.gov (and NOT in the AFF) include the 2017 Economic Census this summer and the 1-year 2018 ACS in September.

View the Release Notes and FAQs for more details about the platform: general documentation, recent developments, bugs, and planned enhancements. The Census Bureau also has an archived webinar with slides that discuss the transition.

Calculate margin of error for ratio (mean income)

Calculating Mean Income for Groups of Geographies with Census ACS Data

When aggregating small census geographies to larger ones (census tracts to neighborhoods for example) when you’re working with American Community Survey (ACS) data, you need to sum estimates and calculate new margins of error. This is straightforward for most estimates; you simply sum them, and take the square root of the sum of squares for the margins of error (MOEs) for each estimate that you’re aggregating. But what if you need to group and summarize derived estimates like means or medians? In this post, I’ll demonstrate how to calculate mean household income by aggregating ZCTAs to United Hospital Fund neighborhoods (UHF), which is a type of public health area in NYC created by aggregating ZIP Codes.

I’m occasionally asked how to summarize median household income from tracts to neighborhood-like areas. You can’t simply add up the medians and divide them, the result would be completely erroneous. Calculating a new median requires us to sort individual household-level records and choose the middle-value, which we cannot do as those records are confidential and not public. There are a few statistical interpolation methods that we can use with interval data (number of households summarized by income brackets) to estimate a new median and MOE, but the calculations are rather complex. The State Data Center in California provides an excellent tutorial that demonstrates the process, and in my new book I’ll walk through these steps in the supplemental material.

While a mean isn’t as desirable as a median (as it can be skewed by outliers), it’s much easier to calculate. The ACS includes tables on aggregate income, including the sum of all income earned by households and other population group (like families or total population). If we sum aggregate household income and number of households for our small geographic areas, we can divide the total income by total households to get mean income for the larger area, and can use the ACS formula for computing the MOE for ratios to generate a new MOE for the mean value. The Census Bureau publishes all the ACS formulas in a detailed guidebook for data users, and I’ll cover many of them in the ACS chapter of my book (to be published by the end of 2019).

Calculating a Derived Mean in Excel

Let’s illustrate this with a simple example. I’ve gathered 5-year 2017 ACS data on number of households (table B11001) and aggregate household income (table B19025) by ZCTA, and constructed a sheet to correlate individual ZCTAs to the UHF neighborhoods they belong to. UHF 101 Kingsbridge-Riverdale in the Bronx is composed of just two ZCTAs, 10463 and 10471. We sum the households and aggregate income to get totals for the neighborhood. To calculate a new MOE, we take the square root of the sum of squares for each of the estimate’s MOEs:

Calculate margin of error for new sum

Calculate margin of error for new sum

To calculate mean income, we simply divide the total aggregate household income by total households. Calculating the MOE is more involved. We use the ACS formula for derived ratios, where aggregate income is the numerator of the ratio and households is the denominator. We multiply the square of the ratio (mean income) by the square of the MOE of the denominator (households MOE), add that product to the square of the MOE of the numerator (aggregate income MOE), take the square root, and divide the result by the denominator (households):

=(SQRT((moe_ratio_numerator^2)+(ratio^2*moe_ratio_denominator^2))/ratio_denominator)
Calculate margin of error for ratio (mean income)

Calculate margin of error for ratio (mean income)

The 2013-2017 mean household income for UHF 101 is $88,040, +/- $4,223. I always check my math using the Cornell Program on Applied Demographic’s ACS Calculator to make sure I didn’t make a mistake.

This is how it works in principle, but life is more complicated. When I downloaded this data I had number of households by ZCTA and aggregate household income by ZCTA in two different sheets, and the relationship between ZCTAs and UHFs in a third sheet. There are 42 UHF neighborhoods and 211 ZCTAs in the city, of which 182 are actually assigned to UHFs; the others have no household population. I won’t go into the difference between ZIP Codes and ZCTAs here, as it isn’t a problem in this particular example.

Tying them all together would require using the ZCTA in the third sheet in a VLOOKUP formula to carry over the data from the other two sheets. Then I’d have to aggregate the data to UHF using a pivot table. That would easily give me sum of households and aggregate income by UHF, but getting the MOEs would be trickier. I’d have to square them all first, take the sum of these squares when pivoting, and take the square root after the pivot to get the MOEs. Then I could go about calculating the means one neighborhood at a time.

Spreadsheet-wise there might be a better way of doing this, but I figured why do that when I can simply use a database? PostgreSQL to the rescue!

Calculating a Derived Mean in PostgreSQL

In PostgreSQL I created three empty tables for: households, aggregate income, and the ZCTA to UHF relational table, and used pgAdmin to import ZCTA-level data from CSVs into those tables (alternatively you could use SQLite instead of PostgreSQL, but you would need to have the optional math module installed as SQLite doesn’t have the capability to do square roots).

Portion of households table. A separate aggregate household income table is structured the same way, with income stored as bigint type.

Portion of households table. A separate aggregate household income table is structured the same way, with income stored as bigint type.

Portion of the ZCTA to UHF relational table.

Portion of the ZCTA to UHF relational table.

In my first run through I simply tried to join the tables together using the 5-digit ZCTA to get the sum of households and aggregate incomes. I SUM the values for both and use GROUP BY to do the aggregation to UHF. In PostgreSQL pipe-forward slash: |/ is the operator for square root. I sum the squares for each ZCTA MOE and take the root of the total to get the UHF MOEs. I omit ZCTAs that have zero households so they’re not factored into the formulas:

SELECT z.uhf42_code, z.uhf42_name, z.borough,
    SUM(h.households) AS hholds,
    ROUND(|/(SUM(h.households_me^2))) AS hholds_me,
    SUM(a.agg_hhold_income) AS agghholds_inc,
    ROUND(|/(SUM(a.agg_hhold_income_me^2))) AS agghholds_inc_me
FROM zcta_uhf42 z, hsholds h, agg_income a
WHERE z.zcta=h.gid2 AND z.zcta=a.gid2 AND h.households !=0
GROUP BY z.uhf42_code, z.uhf42_name, z.borough
ORDER BY uhf42_code;
Portion of query result, households and income aggregated from ZCTA to UHF district.

Portion of query result, households and income aggregated from ZCTA to UHF district.

Once that was working, I modified the statement to calculate mean income. Calculating the MOE for the mean looks pretty rough, but it’s simply because we have to repeat the calculation for the ratio over again within the formula. This could be avoided if we turned the above query into a temporary table, and then added two columns and populated them with the formulas in an UPDATE – SET statement. Instead I decided to do everything in one go, and just spent time fiddling around to make sure I got all the parentheses in the right place. Once I managed that, I added the ROUND function to each calculation:

SELECT z.uhf42_code, z.uhf42_name, z.borough,
    SUM(h.households) AS hholds,
    ROUND(|/(SUM(h.households_me^2))) AS hholds_me,
    SUM(a.agg_hhold_income) AS agghholds_inc,
    ROUND(|/(SUM(a.agg_hhold_income_me^2))) AS agghholds_inc_me,
    ROUND(SUM(a.agg_hhold_income) / SUM(h.households)) AS hhold_mean_income,
    ROUND((|/ (SUM(a.agg_hhold_income_me^2) + ((SUM(a.agg_hhold_income)/SUM(h.households))^2 * SUM(h.households_me^2)))) / SUM(h.households)) AS hhold_meaninc_me
FROM zcta_uhf42 z, hsholds h, agg_income a
WHERE z.zcta=h.gid2 AND z.zcta=a.gid2 AND h.households !=0
GROUP BY z.uhf42_code, z.uhf42_name, z.borough
ORDER BY uhf42_code;
Query in pgAdmin and portion of result for calculating mean household income

Query in pgAdmin and portion of result for calculating mean household income

I chose a couple examples where a UHF had only one ZCTA, and another that had two, and tested them in the Cornell ACS calculator to insure the results were correct. Once I got it right, I added:

CREATE VIEW household_sums AS

To the top of the statement and executed again to save it as a view. Mission accomplished! To make doubly sure that the values were correct, I connected my db to QGIS and joined this view to a UHF shapefile to visually verify that the results made sense (could also have imported the shapefile into the DB as a spatial table and incorporated it into the query).

Mean household income by UHF neighborhood in QGIS

Mean household income by UHF neighborhood in QGIS

Conclusion

While it would be preferable to have a median, calculating a new mean for an aggregated area is a fair alternative, if you simply need some summary value for the variable and don’t have the time to spend doing statistical interpolation. Besides income, the Census Bureau also publishes aggregate tables for other variables like: travel time to work, hours worked, number of vehicles, rooms, rent, home value, and various subsets of income (earnings, wages or salary, interest and dividends, social security, public assistance, etc) that makes it possible to calculate new means for aggregated areas. Just make sure you use the appropriate denominator, whether it’s total population, households, owner or renter occupied housing units, etc.

Updated QGIS Tutorial for 3.4

I recently released an updated version of the manual and data I use for my day-long GIS Practicum, Introduction to GIS Using Open Source Software (Using QGIS). The manual has five chapters: a summary overview of GIS, basics of using the QGIS interface, GIS analysis that includes several geoprocessing and analysis functions, thematic mapping and map layout, and a summary of where to find data and resources for learning more. Chapters 2, 3, and 4 are broken down into sections with clear steps, followed by commentary that explains what we did and why. We cover much of the material in a single day, although you can space the lessons out into two days if desired.

I updated this version to move us from QGIS 2.18 Las Palmas to 3.4 Madeira, which are the former and current long term service releases. While the move from 2.x to 3.x involved a major rewrite of the code base (see the change log for details), most of the basics remain the same. While veteran users can easily navigate through the differences, it can be a stumbling block for new users if they are trying to learn a new version using an old tutorial with screens and tools that are slightly different. So it was time for an update!

My goal for this edition was to keep my examples in place but revise the steps based on changes in the interface. Most of the screenshots are new, and the substantive changes include: using the Data Manager for adding layers rather than the toolbar with tons of buttons, better support for xlsx and ods files which allowed me to de-emphasize xls and dbf files for attribute table joins, the addition of geopackages to the vector data mix, the loss of the Open Layers plugin and my revision to the web mapping section using OSM XYZ tiles, the disappearance of the setting that allowed you to disable on the fly projection, and the discontinuation of the stand-alone Data Browser. There were also changes to some tools (fixed distance and variable buffer tools are now united under one tool) and names of menus (Style menu has once again become the Symbology menu).

It’s hard to believe that this is my ninth edition of this tutorial. I try to update it once a year to keep in sync with the latest long term release, but fell a bit behind this year. QGIS 2.18 also survived for a bit longer than other releases, as the earlier 3.x versions went through lots of testing before ending up at 3.4. When it comes time for my tenth edition I may change the thematic mapping example in chapter 4 to something that’s global instead of US national, and in doing streamline the content. We’ll see if I have some time this summer.

Since I’m in update mode, I also fixed several links on the Resources page to cure creeping link rot.

Census Workshop Recap

I’ve been swamped these past few months, revising my census book, teaching a spatial database course, and keeping the GIS Lab running. Thus, this will be a shorter post!

Last week I taught a workshop on understanding, finding, and accessing US Census Data at the Metropolitan Library Council of New York. If you couldn’t make it, here are the presentation slides and the group exercise questions.

Most of the participants were librarians who were interested in learning how to help patrons find and understand census data, but there were also some data analysts in the crowd. We began with an overview of how the census is structured by dataset, geography, and subject categories. I always cover the differences between the decennial census and the ACS, with a focus on how to interpret ACS estimates and gauge their reliability.

For workshops I think it’s best to start with searching for profiles (lots of different data for one place). This gives new users a good overview of the breadth and depth of the types of variables that are available in the census. Since this was a New York City-centric crowd we looked at the City’s excellent NYC Population Factfinder first. The participants formed small groups and searched through the application to answer a series of fact-finding questions that I typically receive. Beyond familiarizing themselves with the applications and data, the exercises also helped to spark additional questions about how the census is structured and organized.

Then we switched over to the Missouri Census Data Center’s profile and trends applications (listed on the right hand side of their homepage) to look up data for other parts of the country, and in doing so we were able to discuss the different census geographies that are available for different places. Everyone appreciated the simple and easy to use interface and the accessible tables and graphics. The MCDC doesn’t have a map-based search, so I did a brief demo of TIGERweb for viewing census geography across the country.

Once everyone had this basic exposure, we hopped into the American Factfinder to search for comparison tables (a few pieces of data for many places). We discussed how census data is structured in tables and what the difference between the profile, summary, and detailed tables are. We used the advanced search and I introduced my tried and true method of filtering by dataset, geography, and topic to find what we need. I mentioned the Census Reporter as good place to go for ACS documentation, and as an alternate source of data. Part of my theme was that there are many tools that are suitable for different needs and skill levels, and you can pick your favorite or determine what’s suitable for a particular purpose.

We took a follow-the-leader approach for the AFF, where I stepped through the website and the process for downloading two tables and importing them into a spreadsheet, high-lighting gotchas along the way. We did some basic formulas for aggregating ACS estimates to create new margins of error, and a VLOOKUP for tying data from two tables together.

We wrapped up the morning with a foreshadowing of what’s to come with the new data.census.gov (which will replace the AFF) and the 2020 census. While there’s still much uncertainty around the citizenship question and fears of an under count, the structure of the dataset won’t be too different from 2010 and the timeline for release should be similar.

OSM Merida

Extracting OpenStreetMap Data in QGIS 3

The OpenStreetMap (OSM) can be a good source of geospatial data for all sorts of features, particularly for countries where the government doesn’t provide publicly accessible GIS data, and for features that most governments don’t publish data for. In this post I’ll demonstrate how to download a specific feature set for a relatively small area using QGIS 3.x. Instead of simply adding OSM as a web service base map we’ll extract features from OSM to create vector layers.

In the past I followed some straightforward instructions for doing this in QGIS 2.x, but of course with the movement to 3.x the core OSM plugin I previously used is no longer included, and no updated version was released. It’s a miracle that anyone can figure out what’s going on between one version of QGIS and the next. Fortunately, there’s another plugin called QuickOSM that’s quite good, and works fine with 3.x.

Use QuickOSM to Extract Features

Let’s say that we want to create a layer of churches for the city Merida in Mexico. First we launch QGIS, go to the Plugins menu, and choose Manage and Install plugins. Select plugins that are not installed, do a search for QuickOSM, select it, and install it. This adds a couple buttons to the plugins toolbar and a new sub-menu under the Vector menu called Quick OSM.

Next, we add a layer to serve as a frame of reference. We’re going to use the extent of the QGIS window to grab OSM features that fall within that area. We could download some vector files from GADM or Natural Earth; GADM provides several layers of administrative divisions which can be useful for locating and delineating our area. Or we can add a web service like OSM and simply zoom in to our area of interest. Adjust the zoom so that the entire city of Merida fits within the window.

Merida in QGIS

OSM XYZ Tiles in QGIS – Zoomed into Merida

Now we can launch the Quick OSM tool. The default tab is Quick query, which allows us to select features directly from an OSM server (you need to be connected to the internet to do this). OSM data is stored in an XML format, so to extract the data we want we’ll need to specify the correct elements and tags. Ample documentation for all the map features is available. In our example, churches are referred to as places of worship and are classified as an amenity. So we choose amenity as the key and place_of_worship as the value. The drop down box allows us to search for features in or around a place, but as discussed in my previous post place names can be ambiguous. Choose the option for canvas extent, and that will capture any churches in our map window. Hit the advanced drop down arrow, and you have the option to select specific types of geometry (keep them all). Hit the run query button to execute.

Quick OSM Interface

Quick OSM Interface

We’ll see there are two results: one for places of worship that are points, and another for polygons. If you right click on one of these layers and open the attribute table, you’ll see a number of tags that have been extracted and saved as columns, such as the name, religion, and denomination. The Quick query tools pulls a series of pre-selected attributes that are appropriate for the type of feature.

Places of Worship

The data is saved temporarily in memory, so to keep it you need to save each as a shapefile or geopackage (right click, Export, Save Features As). But before we do that – why do have two separate layers to begin with? In some cases the OSM has the full shape of the building saved as a polygon, while in other cases the church is saved as a point feature, with a cross or other religious symbol appropriate for the type of worship space. It simply depends on the level of detail that was available when the feature was added.

Polygon versus Point

Church as polygon (lower left-hand corner) and as point (upper right-hand corner)

If we needed a single unified layer we would need to merge the two, but this process can be a pain. Using the vector menu you can convert the polygons to points using the centroid tool, and then use the merge tool to combine the two point layers. This is problematic as the number of fields in each file is different, and because the centroid tool changes the data type of the polygon’s id number to a type that doesn’t match the points. I think the easiest solution is to load both layers into a Spatialite database and create a unified layer in the DB.

Use SpatiaLite to Create a Single Point Layer

To do that, right click on the SpatiaLite option in the Browser Panel, choose Create Database, and name it (merida_churches). Then select the church point file, right click, export, save features as. Choose SpatiaLite as the format, for the file select the database we just created, and for layer name call it church_points. The default CRS (used by OSM) is WGS 84. Hit OK. Then repeat the steps for the polygons, creating a layer called church_polygons in that same database.

Once the features are database layers, we can write a SQL script (see below) where you create one table that has columns that you want to capture from both tables. You load the data from each of the tables into the unified one, and as you are loading the polygons you convert their geometry to points. The brackets around the names like [addr:full] allows you to overcome the illegal character designation in the original files (you shouldn’t use colons in db column names). I like to manually insert a date so to remember when I downloaded the feature set.

BEGIN;

CREATE TABLE all_churches (
full_id TEXT NOT NULL PRIMARY KEY,
osm_id INTEGER NOT NULL,
osm_type TEXT,
name TEXT,
religion TEXT,
denomination TEXT,
addr_housenumber TEXT,
addr_street TEXT,
addr_city TEXT,
addr_full TEXT,
download_date TEXT);

SELECT AddGeometryColumn('all_churches','geom',4326,'POINT','XY');

INSERT INTO all_churches
SELECT full_id, osm_id, osm_type, name, religion, denomination,
[addr:housenumber], [addr:street], [addr:city], [addr:full],
'02/11/2019', ST_CENTROID(geometry)
FROM church_polygons;

INSERT INTO all_churches
SELECT full_id, osm_id, osm_type, name, religion, denomination,
[addr:housenumber], [addr:street], [addr:city], [addr:full],
'02/11/2019', geometry
FROM church_points;

SELECT CreateSpatialIndex('all_churches', 'geom');

COMMIT;

Unfortunately the QGIS DB Browser does not allow you to run SQL transactions / scripts. You can paste the entire script into the window, highlight the first statement (CREATE TABLE), execute it, then highlight the next one (SELECT AddGeometryColumn), execute it, etc. Alternatively if you use the Spatialite CLI or GUI, you can save your script in a file, load it, and execute it in one go.

QGIS DB Browser

When finished we hit the refresh button and can see the new all_churches layer in the DB. We can preview the table and geometry and add it to the QGIS map window. If you prefer to work with a shapefile or geopackage you can always export it out of the db.

Other Options

The QuickOSM tool has a few other handy features. Under the Quick query tool is a plain old Query tool, which shows you the actual query being passed to the server. If you’re familiar with the map features and XML structure of OSM you can modify this query directly. Under the Query tool is the OSM File tool. Instead of grabbing features from the server, you can download an OSM pbf file (Geofabrik provides data for each country) and use this tool to load data from that file. It loads all features from the file for the geometries you choose, so the process can take awhile. You’ll want to load the data into a temporary file instead of saving in memory, to avoid a crash.